Генетические карты сцепления. Генетические карты сцепления определяют хромосомную принадлежность и взаимное расположение генетических маркеров относительно друг друга. Картирование в узком смысле -- определение положения гена или мутации в хромосоме. Позднее этот термин получил более широкое толкование. Он относится не только к гену, но к любому маркеру, под которым подразумевают ген, мутацию, участок ДНК с неопределенной функцией, точку расщепления ДНК рестриктазами. Таким образом, маркер -- это любой наследуемый признак, доступный идентификации тем или иным способом. Установление локализации какого-либо маркера позволяет использовать его для определения положения другого маркера.

На практике именно генетические карты сцепления и только они позволяют локализовать сложные генетические маркеры (например, ассоциированные с симптомами заболевания) на первых этапах исследования и дают возможность их дальнейшего изучения.

До начала 70-х годов XX в. построение генетических карт человека продвигалось очень медленными темпами. Первый ген человека (ген цветной слепоты) был картирован на Х-хромосоме в 1911 г., а первый аутосомный ген -- только в 1968 г. К 1973 г. на хромосомах человека было картировано 64 гена, а к 1994 г. -- 5000 структурных генов и свыше 60 000 маркерных ДНК-последовательностей. Столь стремительный прогресс в картировании генов человека связан с появлением новых технологий в цитогенети-ке, в клеточных культурах и особенно в молекулярной генетике.

Гибридизация соматических клеток. Одним из наиболее популярных методов отнесения генетического маркера (функционально активного гена) к конкретной группе сцепления является гибридизация (слияние друг с другом) соматических клеток разных биологических видов организмов, один из которых -- исследуемый. Гибридные клоны получают путем искусственного слияния клеток человека и различных грызунов: китайского хомячка, мыши, крысы. Культивирование таких соматических гибридов, как оказалось, сопровождается утратой хромосом человека. Потеря хромосом носит случайный характер, и образующиеся клоны клеток содержат оставшиеся хромосомы в разных сочетаниях. Так получают панели гибридных клеточных клонов, содержащих всего одну или несколько хромосом человека и полный набор хромосом другого вида. Обнаружение человеческих белков, специфических мРНК или последовательностей ДНК в таких клонах позволяет однозначно определить хромосомную принадлежность соответствующих генов.

Гибридизация in situ (в том же месте). Этот метод дает возможность локализовать определенные последовательности нуклеотидов на хромосомах. Они выступают в качестве зондов. Препараты фиксированных хромосом гибридизуют с исследуемыми последовательностями, меченными радиоактивной или флуоресцентной меткой. Меченые молекулы оказываются ассоциированными с участками хромосом, содержащими последовательности, комплементарные меченому зонду. Полученные гибриды анализируют с помощью микроскопа либо непосредственно, либо после радиоавтографии. Этот метод по частоте использования в последнее время прочно выходит на первое место. Наиболее популярной оказалась группа методов, получивших название флуоресцентной гибридизации in situ -- метод FISH (от англ. Fluorescence in situ hybridization ).

Полимеразная цепная реакция (ПЦР) позволила быстро и эффективно амплифицировать почти любой участок генома человека, а полученные продукты ПЦР использовать в качестве зондов для картирования соответствующих участков на хромосомах путем гибридизации in situ . В этом плане успешно разработана концепция сайтов, привязанных к последовательностям, --STS (от англ. Sequence-tagged sites). Все фрагменты ДНК, которые используются для построения генетических и физических карт, можно однозначно идентифицировать с помощью последовательности нуклеотидов длиной в 200 -- 500 н.п., которая является уникальной для данного фрагмента. Эти сайты амплифицируют с помощью ПЦР и применяют в качестве зондов. STS позволили создать основу для разработки единого языка, дающего возможность разным лабораториям описать свои клоны. Конечным результатом разработки концепции STS является создание исчерпывающей карты STS генома человека. Для получения маркеров в настоящее время часто применяют праймеры, соответствующие диспергированным повторяющимся последовательностям, среди которых первыми стали использовать А1u-последовательности, так как они характерны именно для генома человека. Поскольку в геноме человека больше 90 % умеренно повторяющихся последовательностей представлены семействами А1u и Крn I (последние повторяются реже и обладают характерной локализацией в хромосомах), они и используются для получения соответствующих зондов в ПЦР-реакции.

Физические карты низкого разрешения. Физические карты генома отражают реальное расстояние между маркерами, выражаемое в парах нуклеотидов. Физическую карту низкого разрешения часто называют хромосомной (цитогенетической) картой генома.

В начале 70-х годов XX в. появилась реальная возможность точной идентификации не только всех хромосом в кариотипе человека, но и их отдельных сегментов. Это связано с появлением мето да дифференциального окрашивания препаратов метафазных хромосом. Хромосомные препараты окрашивают некоторыми флуорохромами после соответствующей протеолитической обработки или нагревания. При этом на хромосомах выявляется характерная поперечная исчерченность -- так называемые диски (бэнды), расположение которых специфично для каждой хромосомы. Величина небольших дисков на прометафазных хромосомах соответствует примерно 1 млн н.п. на физических картах. Каждая хромосома после дифференциальной окраски может быть разделена на сегменты, нумерация которых начинается от центромерного района вверх (короткое плечо р) либо вниз (длинное плечо -- q) . Полосы в каждом сегменте также пронумерованы в аналогичном порядке. Запись положения гена на карте включает номер хромосомы, плечо, номер сегмента, бэнда и его субъединицы.

Запись 7 q21.1 означает, что ген локализован в субъединице 1-го бэнда 2-го сегмента длинного плеча хромосомы 7. Подобная запись удобна для цитогенетического картирования метода гибридизации in situ, позволяющего локализовать ген с точностью до одного бэнда и даже его субъединицы.

Хромосомные карты генома человека получают также локализацией генетических маркеров, чаще всего методом FISН: для метафазных хромосом разрешающая способность хромосомных карт находится в пределах 2 -- 5 млн н.п.; для интерфазных хромосом (генетический материал находится в менее компактной форме) -- приближается к 100 тыс. н.п. Для этого уровня картирования характерны карты кДНК (с. 358). Они отражают положение экспрес-сирующихся участков ДНК (экзонов) относительно известных ци-тогенетических маркеров (бэндов) на метафазных хромосомах. Поскольку такие карты дают представление о локализации транскрибирующихся участков генома, в том числе и генов с неизвестными функциями, они могут быть использованы для поиска новых генов. Этот подход полезен при поиске генов, повреждение которых вызывает заболевания человека, в том случае, если приблизительная локализация таких участков хромосом уже проведена на генетических картах сцепления (см. рис. 100).

Физические карты высокого разрешения. Для построения физических карт высокого разрешения экспериментально реализуется два альтернативных подхода: картирование сверху вниз и картирование снизу вверх (рис.В к геному) . Для картирования сверху вниз препарат ДНК индивидуальной хромосомы человека разрезают крупнощепящими рестриктазами (например, Not I) на длинные фрагменты, которые после разделения методом электрофореза в пульсирующем поле подвергаются дальнейшей обработке другими рестриктазами.

Методом электрофореза под действием однонаправленного постоянного поля в агарозном или полиакриламидном гелях удается разделить фрагменты ДНК размером не более 30 --50 тыс. н.п. Продвижение больших фрагментов ДНК в геле при пульсирующем изменении направления электрического поля происходит за счет конформационных изменений, обусловленных скручиванием и раскручиванием молекул ДНК в момент переключения направления поля. В этом случае удается разделить молекулы ДНК размером от 50 тыс. н.п. до 10 млн н.п.).

В результате получают макрорестрикционную карту. Метод электрофореза был с успехом использован для картирования малых геномов.

Для картирования генома человека снизу вверх на основе препарата суммарной ДНК генома или индивидуальной хромосомы получают серию случайных клонов протяженных последовательностей ДНК (10-- 1000 тыс. н.п.), часть из которых перекрывается друг с другом. В качестве вектора для клонирования в этом случае используют искусственные минихромосомы дрожжей (УАС). Последовательный набор клонов, содержащих частично перекрывающиеся и дополняющие друг друга фрагменты ДНК из определенного района генома, получил название скользящего зондирования, или «прогулки по хромосоме». Каждый раз отобранный фрагмент используется в качестве ДНК-зонда для последующего поиска. В результате получают набор клонированных фрагментов ДНК, полностью перекрывающих исследуемый участок генома, получивший название «контиг». Эта стратегия впервые была успешно применена для изучения 3-й хромосомы дрозофилы. С ее помощью редко удается пройти более 200 -- 300 тыс. н.п. в одном направлении из-за наличия в геноме повторяющихся и трудно клонируемых последовательностей ДНК. Для преодоления таких ограничений и ускорения процесса поиска генных последовательностей Ф. Коллинз, ныне президент Международного консорциума, предложил метод «прыжков» по хромосоме, позволяющий изолировать фрагменты ДНК, отстоящие в геноме друг от друга на сотни тысяч пар нуклеотидов (длина прыжка), не выделяя при этом все промежуточные последовательности ДНК.

Правильность полученных контигов подтверждают обычно гибридизацией in situ (FISH) с одновременной привязкой к определенным участкам исследуемых хромосом.

После краткого рассмотрения основных методов, наиболее часто используемых в молекулярной генетике для исследования структуры и механизмов функционирования генов, представляется целесообразным на примере генома человека подробнее познакомиться с практическим применением этих методов и их модификаций для изучения больших геномов. В целях всестороннего исследования генома человека, этого колоссального по объему хранилища его генетической информации, недавно была разработана и воплощается в жизнь специальная международная программа "Геном человека" ("Human Genome Project"). Основной задачей программы является построение исчерпывающих генетических карт большого разрешения каждой из 24 хромосом человека, которое, в конечном счете, должно завершиться определением полной первичной структуры ДНК этих хромосом. В настоящее время работы по проекту идут полным ходом. В случае успешного его завершения (а это по планам должно произойти в 2003 г.) у человечества появятся перспективы досконального изучения функциональной значимости и механизмов функционирования каждого из его генов, а также генетических механизмов, управляющих биологией человека, и установления причин большинства патологических состояний его организма.

    1. Основные подходы к картированию генома человека

Решение основной задачи программы "Геном человека" включает три основных этапа. На первом этапе необходимо специфическим образом разделить каждую индивидуальную хромосому на части меньшего размера, позволяющего их дальнейший анализ известными методами. Вторая стадия исследований предполагает определение взаимного расположения этих индивидуальных фрагментов ДНК друг относительно друга и их локализации в самих хромосомах. На завершающем этапе необходимо произвести собственно определение первичной структуры ДНК каждого из охарактеризованных фрагментов хромосом и составить полную непрерывную последовательность их нуклеотидов. Решение задачи не будет полным, если в найденных последовательностях нуклеотидов не удастся локализовать все гены организма и определить их функциональное значение. Прохождение трех вышеперечисленных этапов требуется не только для получения исчерпывающих характеристик генома человека, но и любого другого генома большого размера.

      1. Генетические карты сцепления

Генетические карты сцепления представляют собой одномерные схемы взаимного расположения генетических маркеров на индивидуальных хромосомах. Под генетическими маркерами понимают любые наследуемые фенотипические признаки, различающиеся у отдельных особей. Фенотипические признаки, отвечающие требованиям генетических маркеров, весьма разнообразны. Они включают в себя как особенности поведения или предрасположенность к определенным заболеваниям, так и морфологические признаки целых организмов или их макромолекул, различающихся по структуре. С развитием простых и эффективных методов исследования биологических макромолекул такие признаки, известные под названием молекулярных маркеров , стали наиболее часто использоваться при построении генетических карт сцепления. Прежде чем перейти к рассмотрению методов построения таких карт и их значения для исследования генома, необходимо напомнить, что термин "сцепление " употребляется в генетике для обозначения вероятности совместной передачи двух признаков от одного из родителей потомству.

При образовании половых клеток (гамет) у животных и растений на стадии мейоза, как правило, происходит синапсис (конъюгация) гомологичных хромосом. Сестринские хроматиды гомологичных хромосом соединяются по всей длине друг с другом, и в результате кроссинговера (генетической рекомбинации между хроматидами) происходит обмен их частями. Чем дальше два генетических маркера располагаются друг от друга на хроматиде, тем больше вероятность того, что разрыв хроматиды, необходимый для кроссинговера, произойдет между ними, и два маркера в новой хромосоме, принадлежащей новой гамете, окажутся отделенными друг от друга, т.е. их сцепление нарушится. Единицей сцепления генетических маркеров является морганида (единица Моргана, М), которая содержит 100 сантиморганид (сМ). 1 сМ соответствует физическому расстоянию на генетической карте между двумя маркерами, рекомбинация между которыми происходит с частотой 1%. Выраженная в парах оснований 1 сМ соответствует 1 млн п.о. (м.п.о.) ДНК.

Генетические карты сцепления правильно отражают порядок расположения генетических маркеров на хромосомах, однако полученные при этом значения расстояний между ними не соответствуют реальным физическим расстояниям. Обычно данный факт связывают с тем, что эффективность рекомбинации между хроматидами на отдельных участках хромосом может сильно различаться. В частности, она подавлена в гетерохроматиновых участках хромосом. С другой стороны, в хромосомах часто встречаются "горячие точки" рекомбинации. Использование частот рекомбинации для построения физических генетических карт без учета этих факторов будет приводить к искажениям (соответственно занижению или завышению) реальных расстояний между генетическими маркерами. Таким образом, генетические карты сцепления являются наименее точными из всех имеющихся типов генетических карт, и их можно рассматривать только в качестве первого приближения к реальным физическим картам. Тем не менее, на практике именно они и только они позволяют локализовать сложные генетические маркеры (например ассоциированные с симптомами заболевания) на первых этапах исследования и дают возможность их дальнейшего изучения. Необходимо помнить, что в отсутствие кроссинговера все гены, находящиеся на индивидуальной хромосоме, передавались бы от родителей потомству вместе, поскольку они физически сцеплены друг с другом. Поэтому индивидуальные хромосомы образуют группы сцепления генов, и одной из первых задач построения генетических карт сцепления является отнесение исследуемого гена или последовательности нуклеотидов к конкретной группе сцепления. В табл. II.4 перечислены современные методы, которые, по данным В.А. МакКьюзика, наиболее часто использовались для построения генетических карт сцепления до конца 1990 г.

Алфред Стёртевант (сотрудник Моргана) предположил, что частота кроссинговера на участке между генами, локализованными в одной хромосоме, может служить мерой расстояния между генами. Иными словами, частота кроссинговера, выражаемая отношением числа кроссоверных особей к общему числу особей, прямо пропорциональная расстоянию между генами. Тогда можно использовать частоту кроссинговера для того, чтобы определять взаимное расположение генов и расстояние между генами.

Генетическое картирование – это определение поло­жения какого-либо гена по отношению к двум (как минимум) другим генам. Постоянство процента кроссинговера между определенными генами позволяет локализовать их. Единицей расстояния между генами служит 1 % кроссинговера; в честь Моргана эта единица называется морганида (М), или сантиморганида (сМ).

На первом этапе картирования необходимо определить принадлежность гена к группе сцепления. Чем больше генов известно у данного вида, тем точнее результаты картирования. Все гены разбивают на группы сцепления.

Число групп сцепления соответствует гаплоидному набору хромосом. Например, у D. melanogaster 4 группы сцепления, у кукурузы – 10, у мыши – 20, у человека – 23 группы сцепления. При наличии половых хромосом они указываются дополнительно (например, у человека 23 группы сцепления плюс Y-хромосома).

Как правило, число генов в группах сцепления зависит от линейных размеров соответствующих хромосом. Так, у плодовой мушки имеется одна (IV) точечная (при анализе в световом микроскопе) хромосома. Соответственно число генов в ней во много раз меньше, чем в остальных, значительно превосходящих ее по длине. Следует также отметить, что в гетерохроматических районах хромосом генов нет или почти нет, поэтому протяженные области конститутивного гетерохроматина могут несколько изменить пропорциональность числа ге­нов и длины хромосомы.

На основании генетического картирования составляются генетические карты. На генетических картах крайнему гену (т.е. наиболее удаленному от центромеры) соответствует нулевая (исходная) точка. Удаленность какого-либо гена от нулевой точки обозначается в морганидах.

Если хромосомы достаточно длинные, то удаление гена от нулевой точки может превышать 50 М – тогда возникает противоречие между отмеченными на карте расстояниями, превышающими 50%, и постулированным выше положением, согласно которому 50 % кроссоверов, полученных в эксперименте, фактически должны означать отсутствие сцепления, т. e. локализацию генов в разных хромосомах. Это противоречие объясняется тем, что при составлении генетических карт суммируются рас­стояния между двумя наиболее близкими генами, что превышает экспериментально наблюдаемый процент кроссинговера.


Важнейшей задачей молекулярной генетики применительно к медицине является идентификация генов наследственных заболеваний человека и выявление конкретных повреждений в них, приводящих к развитию фенотипических проявлений болезни. Эта задача может пить выполнена с помощью нескольких основных под-
\ОДОВ.
Первый подход к идентификации генов, остававшийся ведущим приблизительно до начала 90-х годов,
| чзируется на имеющейся информации об основном био- х11 мическом дефекте (первичном белковом продукте гена), ха- рактеризующем изучаемую болезнь | Шишкин С.С., Калинин В.Н., ] 992; Gardner Е. et al., 1991; Collins F., 1995].
I l"-реход от белкового анализа на уровень ДНК осуществлялся через секвенирование очищенного белкового продукта и получение ДНК-зондов, использование моноклональных антител и с помощью некоторых других методических приемов. Хромосомная локализация гена в данной схеме поиска является конечным результатом исследования. Описанный подход, использующий ту или иную предварительную информацию о функциональном значении искомого гена, получил название «функциональное клонирование» . Примером успешного применения функционального клонирования является идентификация гена фенилкетонурии. К сожалению, данный метод может быть применен лишь к весьма ограниченному кругу заболеваний человека, тогда как для большинства наследственных болезней первичные продукты гена или патогномоничные биохимические маркеры неизвестны.
Совершенствование молекулярных технологий привело к созданию принципиально иной стратегии поиска гена, не требующей каких-либо предварительных знаний о его функции или первичном биохимическом продукте. Данная стратегия предполагает идентификацию гена на основании точного знания его локализации в определенном хромосомном локусе - «позиционное клонирование» (менее удачный термин «обратная генетика») . Позиционное клонирование ведет к установлению молекулярной основы болезни «от гена к белку» и включает следующие основные этапы: 1) картирование гена болезни в определенном участке конкретной хромосомы (генетическое картирование); 2) составление физической карты изучаемой хромосомной области (физическое картирование); 3) идентификация экспрессирующихся последовательностей ДНК в изучаемой области; 4) секвенирование генов-кандидатов и выявление мутаций в искомом гене у больных лиц; 5) анализ структуры гена.
расшифровка последовательности и первичной структуры его продуктов - мРНК и белка . В ряде случаев позиционное клонирование гена облегчается при обнаружении у больных видимых ци го- генетических перестроек или определяемых делеций в критической хромосомной области, позволяющих значительно повысить точность картирования мутантного гена. Выявление таких перестроек способствовало, в частности, успеху в клонировании генов миодистрофии Дюшепна/Бекера, нейрофиброматоза 1-го типа, туберозного склероза, адренолейкодистрофии и других наследственных заболеваний нервной системы.
Одним из важных промежуточных результатов исследовательского прост а «Геном человека» стало со- здапие все более и более насыщенной транскрипционной карты генома, содержащей сведения о тысячах уже известных генов и экспрессирующихся нуклеотидных последовательностей. Это способствовало значительному развитию еще одного подхода к идентификации первичного генетического дефекта, при котором после предварительного картирования мутантного гена проводится скрининг подходящих генов-кандидатов, расположенных в том же хромосомном участке (lt;lt;positional candidate approach») . Данный метод предполагает наличие определенных знаний о патофизиологии изучаемого заболевания, что дает возможность проводить рациональный отбор гепов-кандидатов для анализа из большого числа генов, которые могут быть расположены в «зоне интереса». Среди неврологических наследственных заболеваний, гены которых были идентифицированы таким образом благодаря анализу подходящих кандидатов в установленном хромосомном интервале, можно назвать дофа-зависимую дистонию и фридрейхо- подобную атаксию с дефицитом витамина Е. По существующим прогнозам, именно анализ «позиционных кандидатов» станет в ближайшем будущем ведущим методом идентификации генов наследственных болезней, чему в немалой степени способствует создание и постоянное расширение компьютерных баз данных экспрессирующихся последовательностей на хромосомах («expressed sequence tags») .
Таким образом, определение хромосомной локализации искомого гена - генетическое картирование - является первым, ключевым шагом на пути к раскрытию молекулярной основы того или иного наследственного заболевания.
Существует несколько основных методов, позволяющих картировать неизвестный ген в конкретном хромосомном локусе: а) клинико-генеалогический (простейший и наиболее давний) - основан на анализе наследования признаков в больших родословных; примером может служить установление локализации гена на Х-хро- мосоме в случае передачи болезни по Х-сцепленному типу; б) цитогенетический - базируется на ассоциации выявляемых при микроскопии хромосомных перестроек с определенным клиническим фенотипом; в) метод гибридизации in situ (в том числе его современная модификация - флюоресцентная гибридизация in situ, FISH) - использует специфическую гибридизацию мРНК и кДНК искомого гена с денатурированными хромосомами на метафазных препаратах клетки; г) метод гибрид ных клеток - основан на анализе совместной сегрегации клеточных признаков и хромосом в клонированных in vitro гибридных соматических клетках [Фогель Ф., Мотульски А., 1990; Gardner Е. et al., 1991]. Все эти методы нашли свое применение в современной молекулярной генетике, однако они обладают серьезными ограничениями, связан ными как с недостаточной разрешающей способностью, так и с существованием жестких предусловий, необходимых для проведения исследования (таких как наличие зондов, доступность селективных систем для отбора гибридных клеток и т.п.). Наиболее мощным, продуктивным и широко используемым в настоящее время методом картирования генов наследственных болезней человека является так называемый linkage-анализ - анализ сцепления искомого гена с набором точно локализованных генетических маркеров .
Центральное положение linkage-анализа заключается в том, что мерой относительного генетического расстояния между двумя локусами па хромосоме может служить частота рекомбинаций между этими локусами в результате кроссинговера гомологичных хромосом в мейозе. Чем ближе расположены локусы па хромосоме, I ем больше вероятность того, что они будут наследоваться как единое целое (группа сцепления); при значительной удаленности изучаемых локусов (т.е. слабой степени сцепления) они с большей вероятностью разойдутся после кроссинговера по разным хромосомам. Частота рекомбинации между локусами 1% принята за единицу

  1. енетического расстояния между ними - 1 сантиморга- ниду (сМ), что эквивалентно в среднем 1 миллиону п.о. Следует подчеркнуть, что частота рекомбинаций и, следовательно, генетическое расстояние, неодинаковы для мужчин и женщин (больше у женщин), для разных хромосом, а также для разных участков одной хромосомы («горячие точки» рекомбинации) .
Сущность анализа сцепления состой! в сопоставлении наследования патологического признака (болез-

Рис. 30. Принцип анализа генетического сцепления на примере аутосомно-доминантного заболевания В данном примере исследованы 4 сцепленных маркера А, В, С и D, по которым реконструированы гаплотипы. Разные по происхождению хромосомы маркированы различными типами штриховки (исходная мутантная хромосома обозначена черным цветом). Все больные в родословной имеют одну и ту же общую (среднюю) часть исходной мутантной хромосомы. Например, в нижнем поколении хромосомы претерпели ряд рекомбинаций, однако у всех больных сибсов (в том числе у лиц Ш-З и Ш-8) сохраняется один и тот же мутантный гаплотип по маркерам В и С (гаплотип у). Напротив, никто из здоровых сибсов в нижнем поколении не унаследовал от отца гаплотип j по маркерам В и С (индивидуум Ш-4 унаследовал хромосому, в которой рекомбинация произошла ниже критического сегмента). Таким образом, сегрегация маркерных аллелей и анализ гаплотипов свидетельствуют о том, что ген заболевания расположен в хромосомном сегменте, включающем в себя маркеры В и С. Соответственно, внешними границами участка хромосомы, в пределах которого расположен мутантный ген, являются маркеры А и D.
и тот же аллель исследуемого маркера, это свидетельствует об отсутствии рекомбинаций между искомым мутантным геном и данным маркером, т.е. о наличии сцепления между ними. Пример сцепления между геном аутосомно-доминантного заболевания и определенными генетическими маркерами представлен на рис. 30.
Для достоверного доказательства сцепления разработан специальный математический аппарат . Принцип расчета заключается в сопоставлении вероятностей гипотез о наличии и отсутствии сцепления при имеющихся семейных данных и выбранной частоте рекомбинаций 0; соотношение этих двух вероятностей (соотношение правдоподобий) выражает шансы за и против сцепления. Для удобства используется десятичный логарифм соотношения правдоподобий - Лод- балл (от англ. Logarithm of the Odds, или LOD):
Po
LOD = Logio --
P1/2 , где P - вероятность
полученного распределения семейных данных для сцепленных генов с частотой рекомбинаций 0, Р - вероятность такого распределения для двух несцепленных свободно рекомбинирующих генов (частота рекомбинаций 0 = 1/2). Использование логарифмической формы расчета позволяет проводить сложение 27од-баллов, полученных при анализе отдельных родословных. Для доказательства генетического сцепления принято значение Лод- балла +3, которое означает соотношение шансов 1000:1 в пользу наличия генетического сцепления междgt; маркером и изучаемым признаком. Лод-балл -2 и ниже свидетельствует о достоверном отсутствии сцепления; значения Лод-балла от +3 до - 2 являются, соответственно, более или менее предположительными с точки зрения наличия сцепления и нуждаются в дальнейшем подтверждении. Частота рекомбинаций 0, для которой был выявлен максимальный Л од-балл, является отражением наиболее вероятного генетического расстояния между изучаемыми локусами; ориентировочно считается, что 1% рекомбинаций свидетельствует об очень тесном сцеплении, частота рекомбинаций около 5% - о хорошем сцеплении и частота 10-20% - о некотором умеренном сцеплении.
Расчет Лоб-баллов предполагает использование специального компьютерного программного обеспечения (программа LIPED, пакет программ LINKAGE и др.) .
Для успеха linkage-анализа необходимо, чтобы исследуемые семьи были информативны по болезни и по генетическому маркеру. Первое означает наличие достаточного числа информативных мейозов в родословной, позволяющих анализировать расхождение признаков в данной родословной. С практической точки зрения это означает наличие большого числа доступных для анализа больных и здоровых родственников, как правило, из нескольких поколений. Информативность по маркеру предполагает его полиморфизм (т.е. существование большого числа аллелей) и гетерозиготность у ключевых членов семьи, что позволяет дифференцировать генетическое происхождение конкретных аллелей маркера. До конца 80-х годов основным типом маркеров, используемых в анализе сцепления, были участки ДНК хромосом, имеющие в своем составе вариацию в одной паре оснований и различаемые по наличию или отсутствию участка рестрикции для соответствующего фермента, т.е. по длине рестрикционных фрагментов («restriction fragment length polymorphism», RFLP) . Новая эра в генетическом картировании наступила с открытием класса высокополиморфных маркеров, представляющих собой участки ДНК, состоящие из вариабельного числа копий тандемных (СА)п-повторов и обладающие чрезвычайно высокой гетерозиготностью . Это позволило в значительной степени разрешить проблему информативности используемых маркеров и способствовало существенному прогрессу linkage-анализа. По некоторым оценкам, для скрининга полного гаплоидного генома и выявления генетического сцепления необходимо иметь 200-300 высокополиморфных маркеров, равномерно распределенных по хромосомам . Генетические карты последнего поколения включают свыше 5000 таких маркеров , что позволяет считать сегодня задачу установления генетического сцепления принципиально возможной в любых информативных родословных .
Серьезных проблемой, с которой приходится сталкиваться при проведении анализа сцепления на серии семей, является проблема возможной генетической гетерогенности изучаемого клинического синдрома. В случае, если изучаемый фенотип может вызываться мутациями в разных генах, механическое сложение полученных в отдельных семьях положительных (при наличии сцепления) и отрицательных (при его отсутствии) Лод- баллов ведет к нивелированию суммарного значения Лод- балла и ложному выводу о полном отсутствии сцепления. Примером может служить аутосомно-доминантная моторно-сенсорная невропатия 1 типа, обусловленная мутациями в разных генах, локализованных на 1-й, 17-й и других хромосомах . В этой ситуации особое значение приобретает тщательное, детальное обследование больных и семей, направляемых для linkage-анализа, с целью отбора максимально однородных клинических групп. Дополнитеёгьным способом избежать ложно-отрицательного результата исследования является использование в процессе расче

та,/7од-баллов специальной программы HOMOG или аналогичных ей программ, позволяющих оценивать вероятность генетической гетерогенности при полученном конкретном наборе семейных данных . Наиболее действенным подходом на первом этапе исследования является анализ сцепления в одной большой информативной родословной, что позволяет заведомо иск почить возможность генетической гетерогенности в изучаемой группе больных. Дополнительные сложности при проведении linkage-анализа связаны с нередко наблюдающейся неполной пенетрант- ностью и вариабельной экспрессивностью мутантного гена, наличием фенокопий среди обследуемых членов семьи, оценкой возраста начала болезни и возможности доклинического носительства мутации, оценкой распространенности конкретных аллелей изучаемых маркеров в популяции и т.д. . Неверный учет или недооценка этих факторов могут существенно повлиять на итоговый результат, поэтому качество подробного клинико-генеалогического анализа в изучаемых семьях выступает на первый план.
Разработано много новых методов, представляющих из себя дальнейшее развитие традиционной стратегии исследования генетического сцепления и существенно повышающих скорость выполнения, методические возможности и разрешающую способность данного анализа в локализации неизвестных генов наследственных заболеваний человека. Одним из таких методов является мультилокусный анализ (multipoint linkage analysis), позволяющий оценивать Лод-баллы для совокупности сцепленных локусов в соответствии с генетической картой изучаемого хромосомного участка и определять наиболее вероятную локализацию мутантного гена в пределах данного участка . В инбредных

родословных с аутосомно-рецессивным заболеванием при наличии предположения об «эффекте основателя» исключительно продуктивным зарекомендовал себя метод гомозиготного картирования: он заключается в анализе «го- мозиготности по происхождению» {«homozygosUy-by- descent») и позволяет оценить степень гомозиготлости больных лиц по серии маркеров как результат наследования от единого предка общего хромосомного участка, включающего мутантный ген . Многообещающим является метод «экономного сканирования генома», предполагающий преимущественное использование маркеров, локализованных в «стратегических» CG насыщенных хромосомных областях, богатых экспрессирующимися последовательностями . Предложен также целый ряд других модификаций классического linkage-анализа .
Важно подчеркнуть, что анализ сцепления сохранит свое значение и после идентификации всего генома человека . Например, при изучении все еще достаточно большой группы наследственных заболеваний с неустановленными генами первым шагом на пути к выяснению молекулярного дефекта может служить /ш/ш^е-апализ и определение хромосомного локуса болезни, с последующим скринингом подходящих генов в данной области. Чрезвычайно важной в успехе генетического картирования является роль клинициста. Она заключается в адекватном отборе репрезентативных семей, детальной оценке клинического статуса всех включенных в исследование членов семьи, точной диагностике болезни и оценке характера сегрегации мутантного гена, а также в решении многих других ключевых вопросов.