ГИЛЛЕСПИ ТЕОРИЯ

система постулатов и правил для объяснения и предсказания геом. конфигурации молекул на основе принципа Паули и модели отталкивания электронных пар валентных орбиталей. Согласно Г. т., пространственная направленность хим. связей поливалентного атома в молекуле зависит прежде всего от общего числа электронов в его валентной оболочке. Электронные облака связывающих атомы электронных пар и электронов на несвязывающих орбиталях (т. е. неподеленных пар валентной оболочки атомов) грубо представляются в виде жестких сфер соотв. меньшего и большего диаметров. Атомный остов, включающий ядро и внутр. электронные оболочки, также считается сферическим (с нек-рыми исключениями). Сферич. облака электронных пар окружают остов так, что их взаимное отталкивание минимально, т. е. они максимально удалены друг от друга. Такая модель позволяет оценивать в молекулах. Идеальные конфигурации и значения валентных углов для молекул с числом псфер одинакового диаметра приведены в таблице.

ТИПЫ КОНФИГУРАЦИЙ МОЛЕКУЛ

При разл. диаметрах сфер (связывающих и неподеленных пар электронов) образуются искаженные конфигурации с валентными углами, отличающимися от их идеальных значений. Напр., в молекулах СН 4 , NH 3 и Н 2 О в валентных оболочках атомов С, N и О находятся четыре электронные пары, но для СН 4 они все связывающие, а у атомов азота и кислорода имеются соотв. одна и две неподеленные электронные пары. Поэтому идеальную тетраэдрич. конфигурацию имеет лишь СН 4 ; в молекулах NH 3 и Н 2 О валентные углы меньше тетраэдрического. Оценка радиусов электронных сфер и атомных остовов с использованием значений ковалентных и ионных радиусов атомов, а также постулатов Г. т., касающихся кратных, полярных связей и др., позволяет судить и о длинах связей в молекулах. Г. т. дает результаты качеств. или полуколичеств. характера и применяется гл. обр. в химии неорг. и координац. соединений. Теория полезна также при рассмотрении фрагментов цепных, слоистых и объемных кристаллич. структур.

Осн. положения теории сформулировали Р. Найхолм и Р. Гиллеспи в 1957.

Лит.: Гиллеспи Р., Геометрия молекул, пер. с англ., М., 1975; Минкин В. И., Симкин Б. Я., Миняев Р. М., Теория строения молекул, М., 1979. Ю. А. Пентин.

Химическая энциклопедия. - М.: Советская энциклопедия . Под ред. И. Л. Кнунянца . 1988 .

Смотреть что такое "ГИЛЛЕСПИ ТЕОРИЯ" в других словарях:

    Валентных орбиталей (ОЭПВО) один из подходов в химии, необходимый для объяснения и предсказания геометрии молекул. Согласно этой теории молекула всегда будет принимать форму, при которой отталкивание внешних электронных пар минимально… … Википедия

    В Википедии есть статьи о других людях с такой фамилией, см. Гиллеспи. Гиллеспи, Роналд Джеймс англ. Ronald James Gillespie Дата рождения: 21 августа 1924(1924 08 21) (88 лет) … Википедия

    Рис.1. Электронная теория химической связи была предложена и развита американским физикохимиком Льюисом Г.Н в 1912 1916 гг … Википедия

    - (комплексные соед.), содержат катионный, анионный или нейтральный комплекс, состоящий из центр. атома (или иона) и связанных с ним молекул или ионов лигандов. Центр. атом (комплексообразователь) обычно акцептор, а лиганды доноры электронов, и при … Химическая энциклопедия

    У этого термина существуют и другие значения, см. Гибридизация. Модель молекулы метана, образованной sp3 гибридными орбиталями … Википедия

Пособие по общей химии содержит материал, традиционно включаемый в первую часть курса: атомное ядро и радиоактивность, строение атома, молекулы и ковалентная связь, химическая связь в конденсированном состоянии вещества. Его особенностью является изложение всех вопросов, начиная с нулевого уровня, без опоры на школьную программу. Для всех вводимых понятий, включая самые элементарные, даны определения. Вместе с этим довольно популярная форма сочетается с достаточной строгостью изложения. Каждый тематический раздел заканчивается вопросами для самопроверки, предназначенными помочь студенту в усвоении материала. Несколько глубже, чем это обычно принято в подобных курсах, представлены вопросы химической связи в кристаллах, особенно классификация твердых тел по электронной проводимости и нестехиометрические соединения. Это связано с тем, что издание в первую очередь предназначено для изучающих в НГУ общую химию студентов геолого-геофизического факультета, а для геологов в большей степени важны химические процессы именно в конденсированном состоянии. Пособие может оказаться полезным и для первокурсников факультета естественных наук, для вузовских и школьных преподавателей химии.

Приведенный ниже текст получен путем автоматического извлечения из оригинального PDF-документа и предназначен для предварительного просмотра.
Изображения (картинки, формулы, графики) отсутствуют.

Атома (точнее, их центры) располагаются на одной линии – это при- мер линейной трехатомной молекулы. Для молекулы SnCl2 электронная конфигурация ЦА 4d105s25p2, четыре валентных электрона, и только два из них.. участвуют в образовании σ-связей: Сl––Sn––Cl. Остающиеся два валентных электрона олова остаются неподеленными, т. е. у ЦА, кроме двух СП, имеется еще и одна НП, а общее количество ЭП равно трем. Естественно, для минимизации отталкивания три элек- тронные пары располагаются в пространстве не так, как две, а под углом 120º, в вершине которого находится ЦА. Такие молекулы на- зывают угловыми. Для удобства далее будем обозначать ЦА как А, заместители – Х, неподеленные ЭП – Е (ограничимся пока молекулами с одним ЦА). Полезно ввести понятие стерического числа (СЧ), равного сумме количества заместителей и неподелённых пар. Количество ближайших к выделенному атому соседних ато- мов (ближайших соседей) называют координационным числом (КЧ). Для частиц с ковалентными связями КЧ равно числу σ-связей. Иначе для многоатомной частицы типа АХnEm СЧ = n + m или равно сумме координационного числа и числа неподеленных пар центрального атома. Для рассмотренных примеров СЧ = 2 + 0 = 2 для ВеСl2 и 3 = 2 + 1 для SnСl2. Достаточно очевидно, что если в центр многогранника поместить центральный атом А, то для значе- ний СЧ, равного 4, ЭП должны располагаться по вершинам тетраэд- ра; для СЧ = 5 – по вершинам тригональной бипирамиды; для СЧ = 6 – по вершинам октаэдра. Геометрия расположения ЭП и частиц по Гиллеспи приведена на рис. 24 и в табл. 9. При СЧ ≥ 5 возникает возможность различного взаиморасполо- жения заместителей и НП, т. е. возникает возможность появления пространственных изомеров – соединений одинакового состава, отличающихся геометрией (пространственным строением). Метод Гиллеспи позволяет предсказывать, какие из этих изомеров окажут- ся наиболее устойчивыми, если ввести одно уточнение: отталкива- ние между ЭП увеличивается в ряду СП-СП – СП-НП – НП-НП (связывающие электронные пары притягиваются сразу к двум яд- 78 рам, поэтому их облака расположены в пространстве более ком- пактно, чем НП, и отталкивание между ними меньше). Таблица 9 Геометрия частиц по Гиллеспи СЧ Тип Располо- Геометрия час- Идеальные Примеры жение тицы валентные ЭП углы 2 АХ2Е0 Линейное Линейная 180° BeF2, CO2 3 АХ3Е0 Тре- Треугольная 120° BF3, SO3 АХ2Е1 угольное Угловая 120° SnCl2, SO2 АХ4Е0 Тетраэд- Тетраэдрическая 109° CH4, SO42− 4 АХ3Е1 рическое Пирамидальная 109° H3O+, SO32− АХ2Е2 Угловая 109° H2O, ClO22− АХ5Е0 ТБП 90° (6) , 120° PF5, SiF5− * 5 (3), 180° (1) АХ4Е1 По ТБП Искажённая тетра- 90° (3), 120° SF4, IOCl3 эдрич. («ходули») (1), 180° (1) АХ3Е2 «Т»-образная 90°(2), 180°(1) ClF3, XeOF2 АХ2Е3 Линейная 180° ICl2−, XeF2 АХ6Е0 Октаэд- Октаэдрическая 90° SF6, PCl6− 6 АХ5Е1 рическое Квадратная пира- 90° ClF5, TeCl5− мида АХ4Е2 Квадрат 90° ICl4−, XeF4 Поэтому для СЧ = 5, когда ЦА находится в центре тригональной бипирамиды (ТБП), по вершинам которой располагаются ЭП, оттал- кивание будет минимальным тогда, когда неподелённые пары будут максимально «разведены» в пространстве. Для ТБП имеется два не- эквивалентных положения заместителей: экваториальное (в плоско- сти правильного треугольного основания) и аксиальное – в противо- положных взаимно перпендикулярных вершинах и три различных значения валентных углов: ∠ХэАХэ = 120° в плоскости основания ____________________ * В скобках указано количество таких углов в частице. 79 (три угла), ∠ХэАХа = 90° (шесть углов) и один угол ∠ХаАХа =180°. Соответственно возможно три типа отталкивания между ЭП: макси- мальное отталкивание будет при наименьшем угле между ЭП. В со- ответствии с приведенным выше рядом отталкивания в зависимости от типа ЭП (НП или СП) неподелённые пары стремятся распола- гаться в экваториальном положении. Поэтому, как правило, приве- денная в табл. 9 и на рис. 24 геометрия молекул типа АХ4Е1 («иска- женный тетраэдр» или жаргонное наименование «ходули») более устойчива, чем тригональная пирамида, в которой ЦА находится в центре треугольного основания, а в вершинах заместители Х. По тем же причинам молекулы типа АХ3Е2 – «Т-образные», а не плоские треугольные; АХ2Е3 – линейные; АХ4Е2 – квадратные. Не следует смешивать разные понятия: геометрию расположе- ния ЭП (т. е. А, Х и Е), целиком и однозначно задаваемую СЧ (ли- нейная, треугольная, тетраэдрическая, ТБП, октаэдрическая), и гео- метрию самой частицы, т. е. взаимное расположение атомов (А и всех Х) в частице. Неподелённые пары – неотъемлемая часть цен- трального атома А, и их взаимное расположение имеет только вспо- могательное значение для определения геометрии частицы АХn. Рис. 25. Модели молекул HgCl2, SO2, BF3, CH4, XeF4 и SF6 На рис. 25приведены модели некоторых молекул, отражающие их строение в реальном масштабе. При этом следует помнить (см. разд. 2), что электронные облака, как и в изолированных ато- мах, не имеют четко очерченных границ. Алгоритм определения геометрии частицы по методу Гиллеспи следующий (рассмотрим на примере SО2): 1. Исходя из электронных конфигураций атомов (S 3s23р4, О 2s22p4) определить их ковалентность: 2, 4 или 6 для S и 2 для О. 2. Из значений ковалентностей построить структурную форму- лу, т. е. определить строение частицы: число и расположение σ- и π-связей. В данном случае при ковалентности О, равной только 80 двум, возможен единственный вариант: сера является центральным атомом, кислороды – концевые, связанные с S двойными σ- и π- связями: О=S=О. 3. Определить число неподеленных пар центрального атома (число НП заместителей на геометрию не влияет). Всего валентных электронов у S 6, из них 4 участвуют в четырех связях, остается 2 – одна НП. Молекула типа АХ2Е1. 4. Найти стерическое число (СЧ = 2 + 1 = 3) и задаваемое им расположение ЭП: по вершинам правильного треугольника, под ∠120°. 5. Расположить НП так, чтобы отталкивание НП-НП и НП-СП было минимальным, и определить таким образом геометрию части- цы. В данном случае имеется единственный вариант, так как все вершины правильного треугольника (как и тетраэдра и октаэдра) эквивалентны. Следовательно, молекула SО2 – угловая, валентный ∠ОSО = 120°. Заметим, что реально ∠ОSО несколько меньше 120°, так как отталкивание между НП и заместителями больше, чем между двумя заместителями. Изложенный подход применим и к более сложным ситуациям: когда заместители у ЦА разные (например, РСlF2), или центральных атомов несколько (Сl2O7), или ЦА – ион. Для РСlF2 ЦА – Р, тип АХ3Е1 (точнее, АХ2Х’Е1 но важно, что заместителей 3, не важно, что они неэквивалентны), СЧ = 3 + 1 = 4, следовательно, ЭП расположены по вершинам тетраэдра, а сама мо- лекула пирамидальная (и фосфор, и заместители находятся в верши- нах тригональной пирамиды; валентные углы близки к тетраэдриче- скому углу 109°, но несколько меньше из-за более сильного оттал- кивания НП. Естественно, что, в отличие от правильных РF3 и РСl3, молекула РСlF2 будет иметь несколько искаженную форму. Для Сl2O7 определяем, что такая частица О О может быть построена (ковалентность О – 2) ⏐⏐ ⏐ ⏐ только при ковалентности хлора 7, оба хлора О=Сl⎯О⎯Cl=О центральные, каждый связан двойными связя- ⏐⏐ ⏐ ⏐ ми с тремя концевыми О и еще одним цен- О О тральным, мостиковым, кислородом – одинарной связью, НП у ато- 81 мов хлора не остается. Следовательно, СЧ(Сl) = 4 (каждый хлор, рассматриваемый как ЦА частицы СlО4, типа АХ4Е0), атомы хлора расположены в центре, а кислороды в вершинах двух тетраэдров, причем тетраэдры имеют одну общую вершину – мостиковый ки- слород. Для этого кислорода СЧ(О) = 2 + 2 = 4 и заместители – ато- мы хлора – располагаются относительно него в вершинах тетраэдра (в двух других вершинах – две НП мостикового О). Величины всех валентных углов (ОСlO, ClOCl) – тетраэдрические, близки к 109°. Подход применим не только к нейтральным молекулам, но и к ионам. Например, для определения геометрии Н3О+ будем формаль- но рассматривать в качестве центрального ион О+, который имеет пять валентных электронов, одну неподеленную ЭП, ковалентность, равную 3, и СЧ(О+) = 3 + 1 = 4. Следовательно, ЭП располагаются относительно кислорода по вершинам тетраэдра, все валентные уг- лы близки к 109°, частица – пирамидальная. Обратите внимание на то, что здесь одна из связей – донорно-акцепторная, но это никак не мешает применить метод Гиллеспи. Рассмотрим ещё один пример – частицу с сопряженными связя- ми, нитрат-ион. Для определения геометрии NО3− удобно рассмот- реть резонансную структуру, изображенную на рис. 23, с. 73. Цен- тральным атомом здесь формально служит ион N+; СЧ(N+) = 3 + 0 = 3, следовательно, нитрат-ион – плоский, атом N расположен в центре правильного треугольника, три атома О – в его вершинах. Этот при- − − мер ещё раз показывает полезность ме- О O тода ВС и резонансных структур. Здесь O − − все три возможных резонансных струк- O Si Si O туры дают одинаковую геометрию, но O − O − возможны более сложные случаи, когда из них может быть предсказана различ- ная геометрия частицы. Очень важные для геологии объекты – силикаты. Изолирован- ный ортосиликат-ион SiО44− – тетраэдрический (СЧSi = 4). Диорто- силикат Si2О76−, как показано выше на схеме, представляет собой два кремнекислородных тетраэдра, связанных через мостиковый кисло- род, т. е. с общей вершиной. Аналогичным образом можно постро- ить триортосиликат, объединив кремнекислородные тетраэдры в 82 цепочку, 8−, состав (Si3O10)8−. Но в природе встре- чаются трисиликаты иного строения, циклического – кольцо (Si3O9)6−, как в бенитоите BaTiSi3O9. Кольца из шести тетраэдров (Si6O18)12− встречаются в берилле. Из кремнекислородных тетраэд- ров можно составить бесконечные цепи, ленты, слои и т. п. Строе- ние некоторых силикатов показано на рис. 26. Важно усвоить, что значения ковалентности кремния и кислорода и направленность ко- валентной связи полностью обусловливает и строение многочислен- ных разновидностей силикат-анионов, включая полимерные. Их ос- новная структурная единица – кремне- кислородные тетра- эдры, которые мо- гут соединяться только через мости- ковые атомы О, т. е. общими вершина- ми, но не ребрами или гранями. Теперь можно вернуться к тонко- стям геометриче- ского строения мо- лекул и объяснить, почему в Н2S и РН3 валентный угол близок к 90°, а в Рис. 26. Строение некоторых силикат-анионов Н2О и NН3 – к тет- раэдрическому. Метод отталкивания ЭП предсказывает для всех пе- речисленных частиц тетраэдрические валентные углы, так как везде СЧ = 4 (2 + 2 или 3 + 1). Отталкивание НП-СП больше, чем СП-СП, поэтому все валентные углы должны быть несколько меньше тетра- эдрического (а ∠ХАЕ несколько больше). Метод Гиллеспи – скорее качественный, чем количественный, и не может предсказать, на- сколько отклонится от идеального тетраэдрического значения ва- лентный угол вследствие отталкивания связывающих пар неподе- 83 ленными. В данном случае атомы S и Р существенно больше, чем О и N, поэтому и отталкивание НП-СП для них больше, и отклонение от тетраэдрического угла для них больше, достигая ~15°, тогда как для небольших О и N оно не превышает 5°. Впрочем, это объясне- ние не претендует на единственность, да и такие тонкости не столь существенны. Важно, что метод отталкивания ЭП позволяет уверен- но предсказывать, будет ли данная частица линейной или угловой (здесь и Н2О и Н2S – угловые), треугольной или пирамидальной (NН3 и РН3 – пирамидальные), а отличия валентных углов на деся- ток градусов не слишком существенны. В обоих изложенных подходах к геометрии молекул лежит одна идея – минимизация отталкивания всех ЭП ЦА, но в концепции Гиллеспи, в отличие от подхода гибридизации атомных орбиталей (см. подразд. 3.4), она выражена явно, и именно этот подход позво- ляет очень просто предсказывать геометрию частиц. Вопросы для самопроверки 1. Какое предположение лежит в основе метода отталкивания ЭП? 2. Что такое стерическое число, координационное число? 3. Может ли ковалентность более чем в два раза превышать стери- ческое число? 4. Определите для ВF3 и NF3 стерическое число, расположение ЭП и геометрию. Почему геометрия этих молекул разная? 5. Для ВО33−, ВF4− и SО32− напишите структурные формулы, опре- делите СЧ, расположение ЭП, геометрию и валентные углы. 6. Какие положения занимают неподеленные пары при СЧ = 5? 7. Сравните геометрию SiF4 и SF4, РF5 и ClF5. 8. Объясните геометрию С2Н2 и С2Н4, используя метод Гиллеспи. 9. Приведите примеры пирамидальных, тетраэдрических и октаэд- рических частиц. 10. Приведите примеры линейных частиц разных типов АХ2Еm. 11. Анион NO3− − плоский. Приведите пример плоского двухзаряд- ного аниона. 12. Какова геометрия циклического гексасиликата (Si6O18)12−? Какой состав и геометрия будут у линейного гексасиликата? 84 3.7. Электроотрицательность. Полярность связи Если ковалентная связь образована двумя одинаковыми атомами (хлор в молекуле Cl2, углерод в кристалле алмаза), то обобществленные электроны в равной степени принадлежат обоим атомам: Cl··Cl или Cl–Cl, электронное облако равноудалено от них. Это неполярная ковалентная связь. Если атомы разные (или неэкви- валентные), то электронное облако смещено в сторону одного из них и на нем возникает частичный отрицательный заряд δ−, на другом положительный δ+, где δ < 1, молекула становится полярной (ди- польной), оставаясь, естественно, в целом электрически нейтраль- ной, например Hδ+–Clδ– или в других обозначениях H→Cl; направ- ление прямой стрелки указывает направление смещения электрон- ной плотности. Наличие зарядов в атомах приводит к увеличению энергии связи по сравнению с такой же (гипотетической) неполяр- ной связью; можно условно разделять вклады чисто ковалентной (неполярной) связи и электростатический, за счет взаимного притя- жения частично заряженных атомов. Свойство атомов оттягивать на себя электронную плотность при образовании ковалентной связи называют электроотрица- тельностью. Электроотрицательность (ЭО) зависит от заряда ядра (чем больше Z, тем прочнее удерживаются электроны ядром), раз- мера атома (чем дальше электрон от ядра, тем он при прочих равных условиях легче может быть смещен в сторону более электроотрица- тельного атома) и степени незавершённости внешнего электронного слоя до октета (поэтому галогены имеют большу́ю ЭО). Существует несколько количественных шкал ЭО. Электроотри- цательность связана с энергией отрыва и присоединения электрона. По Малликену, для атома А ЭОА = (IА + ЕА)/2, где IА и ЕА потенциал ионизации и сродство к электрону атома соответственно. Иначе ме- рой ЭО может служить упрочнение связи за счет электростатическо- го вклада: Δ = DAB – (1/2)(DA2 + DВ2), где DAB, DA2 и DВ2 – энергии связи молекул АВ, А2 и В2 соответственно. Наибольшее распростра- нение в химии получила шкала Л. Полинга, основанная на втором подходе. Именно соотношение ЭО атомов определяет такое полезное по- нятие, как степень окисления – условный заряд атома в соедине- 85 нии, если считать все связи полностью ионными (иногда исполь- зуют термин окислительное число). С использованием степени окис- ления записывается последовательность элементов в химических формулах, названия соединений, уравниваются окислительно- восстановительные реакции. Для коротких периодов (2-го и 3-го) ПС с роcтом заряда ядра Z при одинаковом числе электронных слоев потенциал ионизации рас- тет, увеличивается и электроотрицательность. Сверху вниз, по подгруппам ПС, увеличивается число электрон- ных слоёв, и этот эффект сильнее, чем рост Z. В итоге от Li к Cs, от Be к Ra, от F к At потенциал ионизации уменьшается. Аналогичным образом меняется и электроотрицательность (табл. 10). Таблица 10 Электроотрицательность атомов элементов по Полингу Второй период Li Be B C N O F ЭО 1,0 1,5 2,0 2,5 3,0 3,5 4,0 Третий период Na Mg Al Si P S Cl ЭО 0,9 1,2 1,5 1,8 2,1 2,5 3,0 Наиболее электроотрицательный элемент – фтор. Атом F – са- мый маленький (меньше только Н и не образующие соединений Не и Nе) и ему не хватает до завершения октета только одного электро- на. Следующий по электроотрицательности элемент – О, за ним N и Сl. У атомов почти всех металлов ЭО меньше 1,9; ЭОН = 2,1. В подразд. 3.2, с. 64, говорилось о стехиометрии соединений различных элементов с водородом: НЭ для подгруппы VIIА, Н2Э для VIА, Н3Э для VА, хотя для них имеются фториды ЭF7, ЭF6 и ЭF5 соответственно. Фтор – самый электроотрицательный элемент, и во всех фторидах электронная плотность смещена в его сторону. Сте- пень окисления элементов +7, +6 и +5 соответственно (обозначается так: I(VII), S(VI), Р(V), F(−I) или I+7, S+6, Р+5, F−1. Значения степени окисления и ковалентности здесь совпадают. Каким образом атомы I, S, Р достигают ковалентностей 7, 6, 5, подробно обсуждено в под- разд. 3.2 – путем возбуждения валентных электронов на d- подуровень. Если считать связи в рассматриваемых молекулах пол- ностью ионными (I7+F1− и т. п.), то все 7 (6, 5) валентных электронов 86 Э отдаются соответственно семи (шести, пяти) атомам фтора. Таким образом, и подход, основанный на ковалентности, и гипотетические ионные соединения должны обладать одинаковой стехиометрией. Водород, наоборот, чаще имеет ЭО меньше, чем Э, его степень окисления H+1. Степень окисления элементов в соединениях с водо- родом I−1, S−2, Р−3, им не хватает до октета 1, 2 или 3 электрона. В НI, Н2S, РН3 атом Н отдает свой электрон атомам Э, которые не могут принять на свои АО более, чем 1, 2 или 3 электрона соответственно. Электроотрицательность – относительная величина, но именно разность ЭО участвующих в связи атомов определяет ее полярность. При малой разнице (менее 0,5) связь можно считать практически неполярной, таковы важнейшие С⎯Н-связи в органических молеку- лах. А вот связи О⎯Н (ΔЭО = 1,4), С⎯О (ΔЭО = 1,0), N⎯О (ΔЭО = 0,9) – полярные, что существенно проявляется в свойствах органических соединений. Если разность ЭО равна или больше 2, смещение электронной плотности к более электроотрицательному атому настолько велико, что можно говорить о практически полно- стью ионной связи (примеры – галогениды щелочных металлов). Количественная мера полярности молекул – дипольный мо- мент. Для двухатомных молекул его величина тем больше, чем больше величина реального электрического заряда на атомах q и чем больше длина связи ℓ: ре = qℓ. Дипольный момент имеет направле- ние – принято, что он направлен от отрицательного заряда к поло- жительному. В молекулах НF, НСl, НВr, НI с уменьшением ΔЭО ве- личина заряда на атомах уменьшается, что должно приводить к уменьшению ре, но одновременное увеличение длины связи оказы- вает противоположное влияние, и априорно нельзя предсказать, бу- дет ли в этом ряду увеличиваться дипольный момент. Эксперимен- тальные измерения показали, что увеличение полярности преобла- дает над удлинением связи: изменение ре составляет от 1,91 (НF) до 0,42 D*(НI). Молекула с полярными связями не обязательно сама будет полярной. Для многоатомных молекул дипольные моменты всех связей (а это векторы) суммируются по правилам сложения векторов: ____________________ * D (или Д) – дебай, единица измерения ре; 1 D = 3,34·10−30 Кл·м. 87

Метод (теория) отталкивания валентных электронных пар (ОВЭП) Сиджвика-Пауэлла. Правила Гиллеспи.

Этот метод позволяет предсказать структуру (геометрию молекул). В 1940 г его предложили Сиджвик и Пауэлл, а в 1957 г он был усовершенствован Гиллеспи и Найхамом.

1. Расположение электронных пар вокруг центрального атома в молекуле зависит от числа таких пар: они принимают пространственное положение, сводящее к минимуму их взаимное отталкивание.

2. По степени взаимного отталкивания электронные пары располагаются в ряд: НП−НП > НП−СП > СП−СП (отталкивание убывает). НП − несвязывающая (неподеленная) электронная пара ближе расположена к ядру и облако неподеленной пары электронов занимает большее пространство, чем связывающей электронной пары (СП).

3. Электронные пары занимают такие позиции, чтобы углы между ними были максимальны, а отталкивание минимально. Поэтому из нескольких возможных структур, включающих взаимодействие под углом 90°, наиболее благоприятна структура, обладающая наименьшим числом взаимодействий под углом 90° с неподеленной парой.

4. Электронное облако двойной связи занимает большее пространство, чем облако одинарной связи.

5. Чем более электроотрицателен атом − партнер центрального атома, тем меньше пространства вблизи центрального атома требуется для электронной пары. Так как она оттянута к атому-сосоду.

Подсчитывают стерическое число (СЧ) для центрального атома в молекуле, и в зависимости от его значения − такова и геометрия.

СЧ есть сумма связывающих электронных пар (т.е. число связей) и неподеленных электронных пар:

СЧ = СП + НП.

Если у центрального атома нет неподеленных пар, то СЧ = СП.

Кратность связи не влияет на предсказанные структуры: СЧ(ВН 2) = СЧ(СО 2) = 2.

Если один из присоединенных атомов заменен неподеленной парой, то геометрия молекулы меняется:

Тип гибридизации центрального атома А

Стерическое число для центрального атома

СЧ = СП + НП

Состав молекулы

Структура молекулы

Примеры

sp или dp

линейная

BeCl 2 ; HgCl 2 ; CO 2

sp 2 , dp 2 или sd 2

плоская треугольная

BF 3 ; SO 3 ; NO 3 − ; CO 3 2− ; COCl 2

угловая (изогнутая)

SnCl 2 ; SO 2 ;

sp 3 или sd 3

тетраэдрическая

CH 4 ; CCl 4 ; NH 4 + ; PO 4 3− ; POCl 3

тригональная призма

NH 3 ; PF 3 ; AsCl 3 ; H 3 O +

угловая (изогнутая)

sp 3 d или spd 3

тригональная бипирамида

искаженная тетраэдрическая

Для того чтобы определить строение молекулы методом Гиллеспи предлагается следующий порядок действий.

1. На основании формулы молекулы определяется число лигандов n, с которыми центральный атом образует связь и записывается формула AХ n E m с указанием значения n.

2. Находится общее число связывающих и неподелённых электронных пар (n + m) по формуле:

(n + m) = 1/2 (N ц + N л – z) – ,

где N ц – число электронов центрального атома на его внешнем электронном слое, N л – число электронов лигандов, участвующих в образовании связей с центральным атомом, – число -связей в молекуле, z – заряд иона (в случае определения строения молекулярного аниона).

3. Определяется пространственное расположение всех электронных пар (связывающих и неподелённых).

4. Находится число неподелённых электронных пар m и уточняется формула молекулы AХ n E m (указывается значение m).

5. Устанавливается геометрия молекулы.

Вопрос 18) Эффективные заряды атомов в молекулах. Дипольный момент связи, дипольный момент молекул. Дипольный момент молекулы и её строение на примерах ….

ЭФФЕКТИВНЫЙ ЗАРЯД АТОМА, характеризует разность между числом электронов, принадлежащих данному атому в хим. соед., и числом электронов своб. атома. Для оценок эффективного заряда атома используют модели, в к-рых экспериментально определяемые величины представляют как ф-ции точечных неполяризуемых зарядов, локализованных на атомах; напр., дипольный момент двухатомной молекулы рассматривают как произведение эффективного заряда атома на межатомное расстояние. В рамках подобных моделей эффективные заряды атомов можно рассчитать, используя данные оптич. или рентгеновской спектроскопии, ЯМР и др. Однако, поскольку электронная плотность в хим. соед. делокализована и границ между атомами не существует, нельзя описать разл. характеристики соед. одним набором эффективных зарядов атомов; значения этого показателя, определенные разными эксперим. методами, могут не совпадать. Эффективные заряды атомов можно определить также на основе квантовохим. расчетов.
Мера полярности связи – её дипольный момент () – определяется произведением

где q – эффективный заряд, l – длина диполя (расстояние между двумя равными по величине и противоположными по знаку зарядами +q и –q).

Дипольный момент – это векторная величина. Понятия “дипольный момент связи” и “дипольный момент молекулы” совпадают только для двухатомных молекул. Дипольный момент сложной молекулы равен векторной сумме дипольных моментов всех связей. Дипольный момент многоатомной молекулы зависит не только от полярности отдельных связей в молекуле, но и от геометрической формы молекулы.


Например, в линейной молекуле СО 2 каждая из связей С–О полярна, а молекула в целом неполярна
( (СО 2)=0), так как дипольные моменты связей компенсируют друг друга (рис. 8.1). В угловой молекуле Н 2 О связи расположены под углом 104,5 o и векторная сумма дипольных моментов двух связей выражается диагональю параллелограмма (рис. 8.1). Если ¹ 0, то молекула полярна.

Что важно – чем симметричнее молекула, тем меньше ее μ, например симметричные молекулы (CO 2 ; BCl 3 ; CCl 4 ; PCl 5 ; SF 6) неполярны и имеют μ=0.

Вопрос 19) Основные положения метода молекулярных орбиталей (МО ЛКАО). Объясните парамагнитные св-ва … и найдите кратность связи в … и …

Основные положения метода МО:

1) е заселяются вместе в соответствии с принципом Паули: на 1 орбитали не более не более 2-х е)

и правилом Хунда: при наличии орбитали с одинаковой энергией эти орбитали заселяются сначала по 1 е

2) Каждый разрыхляющий е сводит на нет действие связующего электрона. Если разрых е больше или столько же, сколько связующих,то молекула не образуюется. Кр св = (число е(связ)- число е (разрых))/ 2

3) ММО позволяет определить магнитные свойства молекулы: если молекула имеет неспаренный электрон,то она является парамагнетиком, такая частица выталкивается из магнитного поля, частица, имеющая неспаренный электрон называется радикалом, они химически активны и ядовиты. Молекулы, у которых все е спарены, явл диамагнетиками, они не реагируют на магнитное поле.

Энергетический ряд МО

Вопрос 20) Основные положения метода валентных связей при описании химической связи в комплексных соединениях. Рассмотрите на примерах … и …

Согласно МВС при образовании КС возникает д/а связь за счет неподеленной электронной пары лигандов и свободных квантовых ячеек комплексообразователя. При этом орбитали комплексообразователя подвергаются гибридизации. В случае sp гибр – правильный треугольник, sp3 - тетраэдр, dsp2 – квадратная молекула, dsp3 – тригональная бипирамида, d2sp3 - октаэдр. Свободные пары е, которыми обладают лиганды, заполняют пустые орбитали центрального иона. Эти орбитали объединяют в гибридные комбинации в зависимости от координационного числа (к.ч).

Вопрос 21) Основные положения теории кристаллического поля при описании химической связи в комплексных соединениях. Рассмотрите на примерах … и …

Основные положения:

1. связь между к/о и лигандами рассматривается как электростатическая.

2. Лиганды считаются точечными ионами или точечными диполями, их электронное строение игнорируется.

3. Лиганды и к/о считаются жестко закрепленными.

4. Подробно рассматривается электронное строение к/о.

Вопрос 22) Эквиваленты в-в в реакциях обмена (или в окислительно – восстановительных реакциях). Фактор эквивалентности, молярная масса эквивалента, молярный объём эквивалента. Приведите три примера. Закон эквивалентов.

Эквивалент – реальная или условная частица вещества Х, которая в данной кислотно-основной реакции или реакции обмена эквивалентна одному иону водорода Н + (одному иону ОН - или единичному заряду), а в данной окислительно-восстановительной реакции эквивалентна одному электрону. Иными словами, эквивалент – это часть молекулы, приходящаяся на один электрон в данной ОВР или на один протон (один гидроксил, единичный заряд) в данной обменной реакции.

Фактор эквивалентности fэкв(X) – число, показывающее, какая доля реальной или условной частицы вещества Х эквивалентна одному иону водорода или одному электрону в данной реакции, т.е. доля, которую составляет эквивалент от молекулы, иона, атома или формульной единицы вещества. Эта величина меняется от нуля до единицы.

1 моль экв. содержит 6,02.10 23 эквивалентов, а его масса в граммах и будет молярной массой эквивалента : М экв = f экв.M.

Молярный объём эквивалента – это объём, который занимает 1 моль экв. в-ва при нормальных условиях.

Закон эквивалентов: вещества реагируют в количествах, пропорциональных их эквивалентам. Если взято n(экв 1) моль эквивалентов одного вещества, то столько же моль эквивалентов другого вещества n(экв 2) потребуется в данной реакции, т.е. (Числа эквивалентов веществ, вступивших в реакцию, и образовавшихся в результате реакции, равны)

nэкв(А)= nэкв(В)= nэкв(С)= nэкв(D)

Пример: O2(0)----+4e----2O(-2)

Fэкв =1/4; Mэкв = M* fэкв = 34*1/4 = 8г/моль; Vэкв = Vm*fэкв = 22,4*1/4=5,6 л/моль*экв

Вопрос 23) Закон эквивалентов. Различные формы записи закона (реакции в-в в растворах, реакции в-в в газообразном состоянии). Что такое нормальная концентрация и как она связана с молярной концентрацией?

Вопрос 22

1 моль экв. содержит 6,02.10 23 эквивалентов, а его масса в граммах и будет молярной массой эквивалента: М экв = f экв.M. Число молей эквивалентов каждого из участников процесса может быть найдено следующим образом: ; , где m A и m B – массы в-в А и B. И поэтому другая запись закона эквивалентов имеет: “число молей эквивалентов участников данного процесса есть постоянная величина” : n экв.A = n экв.B = n экв.C = … = const.

Если участники процесса находятся в растворе, то число молей эквивалентов каждого из них может быть найдено умножением нормальной концентрации в-ва на объём его раствора. В результате для этого частного случая закон эквивалентов принимает форму:

Для химических расчетов с участием газов наряду с молярными массами активно использует величина 22,4 л (объём 1 моль газа при нормальных условиях). Аналогично вводится: .

Нормальная концентрация (нормальность) н раствора показывает сколько моль эквивалентов растворенного в-ва содержится в 1 л раствора.

n р.в моль экв = Сн * V рас-ра

Связь между Сн и См: при fэкв < 1 Сн > См

Вопрос 24) Классификация окислительно – восстановительных реакций. Преведите по 2 примера реакций каждого типа (не используйте уравнения из задания №5).

Классификация ОВР:

I группа – реакции межатомного и межмолекулярного окисления, восстановления – это реакции, в которых обмен е происходит между различными атомами, молекулами или ионами.

2KBr+ Cl2 àBr2+ 2KCl

2) II группа – реакции диспропорционирования. В реакциях диспропорционирования молекулы или ионы одного и того же вещества реагируют друг с другом, как восстановитель и окислитель.

например: (N -3 H 4) 2 Cr +6 2 O 7 N 0 2 + Cr +3 2 O 3 + 4H 2 0.

Сl2 + 2NaOH àt NaCl + NaClO+H2O

3Cl2+ 6NaOH à 5 NaCl + NaClO3 + 3H2O

3)III группа - реакции внутримолекулярного окисления, восстановления, в которых окислитель и восстановитель находятся в одной молекуле: 2KClO3 à 3O2 + 2KCl

4) IV группа – реакции контрдиспропорционирования. Реакции, которые протекают между одним и тем же элементом, в положительном и отрицательном степени окисления, образуется промежуточн. ст. окисления

2H2S + SO2 à 3S + 2H2O

(N 3- H 4) 2 N 3+ O 2 = N 2 0 + H 2 O

Вопрос 25) Типичные восстановители в ОВР. Каковы продукты их окисления? Приведите примеры. Классификация ОВР.

Восстановитель – вещество, молекулы или ионы которого отдают электроны. Типичные восстановители:

Атомы Ме, ионы неМе, положительно заряж. ионы неМе, Ме, котоые отдают электроны. 1 группа: Fr Cs K Na Li Ba Sr Ca Mg

2 группа: Br (-) S (2-) Cl(-) I (-) Se(2-)

3 группа: SO3 NO2 SnO2

4 группа: Sn Fe Cr Mn катионы металлов в низких степенях окисления

5 группа: H2 C N2H2 CO SO2

Аммиак и соединения аммония.

HCl(только конц) KBr NaI CuS(2-)

Продукты их окисления: если элемент является восстановителем – его степень окисления повышается.

Fe(+2) à Fe(+3)

Нитрит в нитрат

Сульфит в сульфат

NH3àв N2 или HNO3(или соли)

S(2-) à S(0) SO4 (кис-та или соли)

HHal à Br2 I2 Cl2

HNO2 à обычно в NO

Классификация 25 вопрос

Примеры:

2KMnO4+ 10KBr (восстановитель) + 8H2SO4 à 2MnSO4 + 5Br2+ 6K2SO4 +8H2O

KMnO4 + 16HCl à 5Cl2+2 MnCl2 + 2KCl +8H2O

Вопрос 26) Типичные окислители в ОВР. Каковы продукты их восстановления? Классификация ОВР. Приведите примеры.

Окислитель – вещество, молекулы или ионы которого принимают электроны. Типичные окислители:

1) в-ва, молекулы которых содержат атомы элементов в высших положительных степенях окисления, например: KMn +7 O 4 , KBi +5 O 3 , K 2 Cr 2 +6 O 7 , Pb +4 O 2 ; хроматы, дихроматы,манганаты

2) катионы металлов более высокого заряда (более высокой степени окисления), например: Fe +3 ; Au +3 ; Sn +4 ;

3) галогены и кислород (при повышенных температурах).

H2O2, H2SO4(к), HNO3

Классификация ОВР: вопрос 24

Продукты их восстановления: Если элемент является окислителем – его степень окисления понижается; Среди простых веществ окислительные свойства характерны для типичных неметаллов (F 2 , Cl 2 , Br 2 , I 2 , O 2 , O 3). Галогены, выступая в качестве окислителей, приобретают степень окисления –1, причем от фтора к иоду окислительные свойства ослабевают. Кислород, восстанавливаясь, приобретает степень окисления –2 (H 2 O или OH–).

Концентрированная серная кислота проявляет окислительные свойства за счет серы в высшей степени окисления +6. Концентрированная H 2 SO 4 в реакциях с металлами может восстанавливаться до SO 2 , S или H 2 S. Состав продуктов восстановления определяется активностью металла, концентрацией кислоты и температурой. При обычной температуре концентрированная серная кислота не реагирует с такими металлами, как железо, хром и алюминий (явление пассивации), а при нагревании H 2 SO 4 не реагирует с золотом и платиной. Малоактивные металлы, стоящие в ряду стандартных электродных потенциалов правее водорода, восстанавливают концентрированную серную кислоту до SO 2 . Активные металлы (Ca, Mg, Zn и др.) восстанавливают концентрированную серную кислоту до свободной серы или сероводорода.

Продукты восстановления KMnO 4 зависят от рН среды, в которой протекают реакции:

В кислой à соли Mn(+2) и соль К+

В щелочной à K2MnO4

В нейтральной à MnO2 + KOH

Дихромат, хромат калия K 2 Cr 2 O 7 в кислой среде (H 2 SO 4) восстанавливается до Cr 2 (SO 4) 3 . В щелочной среде в Cr(OH)3 или комплексы.

HNO3 (р) в основном в NO,а концентрированная в NO2.

KClO4 NaBrO3 KClO2 в бескислородные соли KCl NaBr

Галогены в Cl- Br- I- (кислоты или соли)

Примеры:

2KMnO 4 (окислитель) + 5Na 2 SO 3 + 3H 2 SO 4 = 5Na 2 SO 4 + 2MnSO 4 + K 2 SO 4 + 3H 2 O;

K 2 Cr 2 O 7 + 6FeSO 4 + 7H 2 SO 4 = Cr 2 (SO 4) 3 +3Fe 2 (SO 4) 3 + K 2 SO 4 + 7H 2 O.

4Ca + 5H 2 SO 4(конц) = 4CaSO 4 + H 2 S + 4H 2 O.

S + 2H 2 SO 4(конц) = 3SO 2 + 2H 2 O

FeO + 4HNO 3(конц) = Fe(NO 3) 3 + NO 2 + 2H 2 O;

C + 4HNO 3 (конц) = CO 2 + 4NO 2 + 2H 2 O;

Вопрос 27) Общие сведения о комплексных соединениях: комплексообразователь, лиганды, координационное число, внутренняя и внешняя сферы. Классификация комплексных соединений. Приведите примеры.

Соединения высшего порядка, образованные из более простых устойчивых химических форм (молекулах, ионов, атомов), называют комплексными соединениями .

Центральный ион (атом) в компл. соединении наз. комплексообразователем . (ион d– или f–элемента, реже p– или s–элемента).

Непосредственно окружающие к/о ионы или молекулы, называемые лигандами , образуют вместе с к/о внутреннюю (координационную) сферу (выделяется ).

Ионы (молекулы) за пределами внутренней сферы образуют внешнюю сферу компл. соединения.

Общее число лигандов во внутр. сфере называется координационным числом .

Классификация комплексных соединений. Приведите примеры: см. вопрос 28.

Вопрос 28) Классификация комплексных соединений: по виду координируемых лигандов, по заряду комплексного иона, по классам соединений. Номенклатура комплексных соединений. Приведите примеры.

Классификация комплексных соединений:

1) по виду координируемых лигандов: +) аквакомплексы, в которых лигандом явл. молекула воды. Например: Cl3,

+) аминокомплексы (аммиакаты): лиганды NH 3 . Например: Cl, (OH) 2 .

+) ацидокомплексы, в которых лиганды – анионы кислотных остатков. Например: K, K 2 .

+)гидроксокомплексы (OH). Пример: Na3

+) смешанного типа [ Cr(H2O)5Cl]Cl2* H2O

2) по заряду комплексного иона: +) катионные – комплексы имеют катионные к/о. Например: Cl 2

+) анионные – комплексы имеют анионные к/о. Например:

+) нейтральные – к/о не имеют заряда. Например:

3) по классам соединений:

+) кислотные комплексы. Например: H 2 H[ AuCl4].

+) комплексы основания. Например: OH (OH)2.

+) комплексы соли. Например: K 3 Cl.

Номенклатура к.с:

Сначала называем анион, затем катион, но с указанием числа и вида лиганд, название читается справа налево, название катионов и анионов пишут раздельно, указывается валентность комплексообразователя.

В случае аниона берется корень латинского названия элемента, к нему добавляется “ат” (станнат, аурат, плюмбат). Например: К 3 - гексагидроксоалюминат (III) калия; Cl – хлорид дихлоротетрамминхрома (III).

Вопрос 29) Закон Гесса, условия его выполнения. Энтальпии образовании, сгорания, атомизации (определение).

Закон Гесса: Изменение энтальпии (внут. Энергии) химической реакции не зависит от пути процесса, а зависит только от вида и состояния исходных веществ и продуктов реакции.

  1. Единственным видом работы является работа расширения (отсутствует полезная работа).
  2. Давление и температура не меняются (р,Т= const) – изобарно-изотермический процесс.
  3. Объем и температура не меняются (V,T= const) – изохорно-изотермический процесс.
  4. Химическая реакция должна протекать до конца и необратимо.
  5. Теплота рассчитывается на 1 моль вещества, т.е. необходимо учитывать стехиометрические коэффициенты в уравнении реакции.
  6. Тепловые эффекты определяют при нормальных условиях, Т= 25ºС и р = 1 атм, а также используют наиболее устойчивую модификацию.

энтальпия образования Н о f,298 (или Н о обр,298) – это изменение энтальпии в процессе образования данного вещества (обычно 1 моль), находящегося в стандартном состоянии, из простых веществ, также находящихся в стандартном состоянии, причем простые вещества присутствуют в наиболее термодинамически устойчивых состояниях при данной температуре.

Энтальпия сгорания – Стандартной энтальпией сгорания Н o сгор,298 называют энтальпию сгорания вещества (обычно 1 моль), находящегося в стандартном состоянии с образованием СО 2(г) , Н 2 О (ж) и других веществ, состав которых должен быть специально указан. Все продукты сгорания также должны находиться в стандартном состоянии.

Энтальпия атомизации или энергия ионизации – это наименьшая энергия, необходимая для удаления электрона от свободного атома в его низшем энергетическом (основном) состоянии на бесконечность.

Вопрос 30) Закон Гесса. Следствия из закона Гесса. При каких условиях выполняется этот закон?

Закон Гесса: вопрос 29

Следствия из закона Гесса:

Следствие 1. , где n i и n j

Следствие 2. , где n i и n j – числа молей (коэффициенты в уравнении).

1. Изменение энтальпии реакции равно сумме энтальпий образования продуктов реакции за вычетом суммы энтальпий образования исходных веществ (суммирование проводится с учетом стехиометрических коэффициентов).

2. Изменение энтальпии реакции равно сумме энтальпий сгорания исходных веществ за вычетом суммы энтальпий сгорания продуктов реакции (суммирование проводится с учетом стехиометрических коэффициентов).

Условие выполнения вопрос 29

Вопрос 31) Стандартные термодинамические характеристики. Понятие о стандартном состоянии индивидуальных жидких и кристаллических в-в, газов и растворов. Закон Гесса.

Раздел химии, занимающийся изучением тепловых эффектов процессов – термохимия.

Закон Гесса: вопрос 29

За стандартное состояние раствора принимают идеальный раствор, активность растворенного которого = 1, а энтальпия = энтальпии в реально бесконечно разбавленном растворе.

Фугитивностью (летучестью) называют такую величину, которая связана с другими термодинамическими характеристиками реального газа так же, как с ним связано давление в случае идеального газа.

За стандартное состояние газообр. в-ва принимают состояние гипотетически идеального газа, летучесть которого равна единице, а энтальпии реального газа при той же температуре и давлении, стремящейся к нулю. Т.е. за станд. сост. принимается бесконечно разряженный газ.

Осталась одна проблема – аллотропные модификации. Какую из них брать за стандарт? Берут наиболее устойчивую форму, искл.: фосфор берут белый, а не более устойчивый красный, т.к. он более реактивный; S (к.ромб.), а не S (к. моноклин.); С (к. графит), а не С (к. алмаз). Если все участники процесса наход. в стандарт. состоянии, тогда реакция – стандартная и обозначается верхним правым “ноликом”.

Для жидких и кристаллических индивидуальных веществ в качестве стандартного состояния при каждой температуре принимается их состояние под нормальным давлением.

Вопрос 32) Энтальпия и энергия Гиббса, их физический смысл, связь между ними.

Энтальпия (теплосодержание, тепловая функция Гиббса), потенциал термодинамический, характеризующий состояние термодинамической системы при выборе в качестве основных независимых переменных энтропии S и давления р. Обозначается H

Энергия Гиббса − это термодинамический функция состояния системы. Физический смысл: Энергия Гиббса показывает самопроизвольность в течение химической реакции.

ΔG = Нт –TΔS

Физический смысл энтальпии: физический смысл энтальпии: ее изменение - это тепло, подведенное к системе в изобарическом процессе (при постоянном давлении).

Проанализируем уравнение G о Т = Н о Т - Т S о Т. При низких температурах Т S о Т мало. Поэтому знак G о Т определяется в основном значением Н о Т (энтальпийный фактор). При высоких температурах Т S о Т – большая величина, знак D G о Т определяется и энтропийным фактором. В зависимости от соотношения энтальпийного ( Н о Т) и энтропийного (Т S о Т) факторов существует четыре варианта процессов.

1. Если Н о Т < 0, S о Т > 0, то G о Т < 0 всегда (процесс может протекать самопроизвольно при любой температуре).

2. Если Н о Т > 0, S о Т < 0, то G о Т > 0 всегда (процесс не протекает ни при какой температуре).

3. Если Н о Т < 0, S о Т < 0, то G о Т < 0 при Т < Н о / S о (процесс идет при низкой температуре за счет энтальпийного фактора).

4. Если Н о Т > 0, S о Т > 0, то G о Т < 0 при Т > Н о / S о (процесс идет при высокой температуре за счет энтропийного фактора).

Вопрос 33) Энергия Гиббса как термодинамическая функция состояния. Определение и свойства. Вычисление стандартной энергии Гиббса процесса по справочным данным. Критерий самопроизвольного протекания реакций.

G – функция состояния системы, называемая энергией Гиббса. Она равна разности энтальпии и произведения энтропии на температуру: G=H – T∙S Абсолютное значение G определить невозможно. ∆G=∆Н – Т∙∆S Рассчитывают ∆G также, как и ∆Н, используя стандартные энергии Гиббса образования веществ. ΔG хим.реакции = ∑n i G i (продуктов) − ∑n j G j (исх. в-в)

Св-ва ф-ции:

1) однозначная, конечная, непрерывная ф-ция состояния системы;

2) обладает св-вом независимости ΔG от пути перехода от начальных в-в к продуктам.

3) −A пол ≥ G 2 − G 1 = ΔG.

Физический смысл энергии Гиббса вытекает из со отношения: -Aпол=U2+pV2-TS2-(U1-pV1-TS1) – энергия Гиббса в равновесном процессе с точностью до знака равна полезной работе, которую может совершить система. В случае протекания неравновесных процессов энергия Гиббса будет (с обратным знаком) равна максимально возможной полезной работе, которую может совершить система..

: в системах, находящихся при Р, Т = const, самопроизвольно могут протекать только процессы, сопровождающиеся уменьшением энергии Гиббса
( G < 0). При достижении равновесия в системе G = 0.

Вопрос 34) Критерий самопроизвольного протекания реакций, энтальпийный и энтропийный факторы процесса. Какие реакции протекают самопроизвольно в водных растворах?

Критерий самопроизвольного протекания процесса : вопрос 34

ΔG = ΔН – ТΔS. самопроизвольное течение процесса (ΔG< 0) возможно при:

· Если ΔH < 0 и ΔS > 0, то всегда ΔG < 0 и реакция возможна при любой температуре.

· Если ΔH > 0 и ΔS < 0, то всегда ΔG > 0, и реакция с поглощением теплоты и уменьшением энтропии невозможна ни при каких условиях.

· В остальных случаях (ΔH < 0, ΔS < 0 и ΔH > 0, ΔS > 0) знак ΔG зависит от соотношения ΔH и TΔS. Реакция возможна, если она сопровождается уменьшением изобарного потенциала; при комнатной температуре, когда значение T невелико, значение TΔS также невелико, и обычно изменение энтальпии больше TΔS. Поэтому большинство реакций, протекающих при комнатной температуре, экзотермичны. Чем выше температура, тем больше TΔS, и даже эндотермические реакции становятся осуществляемыми.

Чем отрицательней ΔG, тем проще, в более мягких условиях идет процесс.

Энтальпийный и энтропийный факторы процесса:

Если ΔН<0 отражает стремление к объединению частиц в более крупные агрегаты, то ΔS>0 отражает стремление к беспорядочному расположению частиц, к их дезагрегации. Переход системы в состояние с минимальной энергией когда ΔS=0, если же ΔН=0, то система самопроизвольно переходит в наиболее неупорядоченное состояние. Каждая их этих противоположных тенденций, количественно выражаемых ΔН и ΔS зависит от природы в-ва и условий протекания процесса (т-ра, давление, соотношение между реагентами и т.д).

Произведение ТΔS (кДж/моль) явл. энтропийным фактором процесса, ΔН – энтальпийным фактором. В состоянии равновесия: ΔН = ТΔS. Это уравнение явл. условием равновесия, характеризует такое состояние данной системы, когда скорости протекающих в ней противоположных процессов становятся равными. Из этого уравнения : расчет изменения энтропии в равновесном процессе возможен из непосредственно измеряемых величин. ΔН фазового перехода можно определить экспериментально с помощью калориметра.

Реакции, протекающие самопроизвольно в водных растворах: У которых изменение энергии Гиббса меньше нуля.

Вопрос 35) Химическое равновесие. Истинное (устойчивое) и кажущееся (кинетическое) равновесие, их признаки. Приведите примеры.

Равновесным называют ионное состояние системы, которое не изменяется во времени, и эта неизменность не обусловлена протеканием какого-либо внешнего процесса. Равновесие остается неизменным, пока не изменяются внешние условия. Различают истинное (устойчивое) и кажущееся (кинетическое) равновесие.

Истинное равновесие сохраняется неизменным не вследствие отсутствия процессов, а в силу протекания их одновременно в двух противоположных направлениях с одинаковой скоростью. Истинное равновесие имеет следующие признаки:

1. Если нет внешнего воздействия, то система неизменна во времени.

2. Любое малое внешнее воздействие вызывает изменение в равновесии системы. Если внешнее воздействие снимается, то система возвращается в исходное состояние.

3. Состояние системы будет одинаковым независимо от того, с какой стороны она подходит к равновесию.

Кажущееся равновесие также неизменно во времени при отсутствии внешнего воздействия, однако второй и третий признаки для него не характерны. Примером системы в кажущемся равновесии является пересыщенный раствор: достаточно попадания соринки в такой р-р или встряхивания и начинается выделение из р-ра избыточного растворенного в-ва.

При изменении внешних условий равновесие изменяется сообразно новым условиям, или, как говорят, «смещается».

Вопрос 36) Химическое равновесие. Принцип Ле-Шателье – Брауна и смещение равновесия. Рассмотрите на примере реакции ……

Химическое равновесие вопрос 35

Смещение равновесия подчиняется закономерности, называемой принципом Ле-Шателье : “если на систему, находящуюся в истинном равновесии, воздействовать извне, изменяя какой-либо из параметров, определяющих состояние равновесия, то в системе усилится то направление процесса, который ослабевает эффект воздействия и положение системы сместится в том же напралении”.

Смещение равновесия:

1) Повышение температуры равновесной системы усиливает течение эндотермического процесса, охлаждение – наоборот.

2) изменение давления существенно сказывается лишь на равновесиях газовых систем. Увеличение давления для них ведет к смещению равновесия в сторону меньшего объёма, падение давления – в сторону большего объёма.

3) увеличение концентрации исх. в-в ведет к смещению равновесия вправо (в сторону продуктов).

Вопрос 37) Константа химического равновесия. Соотношение величин К р и К с для газовых равновесий. Связь и константы равновесия.

Количественной характеристикой химического равновесия является константа химического равновесия

2 SO2 (г) + O 2(г) 2 SO 3(г)

В момент равновесия концентрация не меняется, также не меняется парциальное давление газов

Кс =

Парциальное давление газа – давление, которое бы этот газ производил, занимая весь объем

Связь между Кс и Кр для гомогенных процессов:

P1 = n1*R*T/V = C1*RT

Кр = Кс(RT)^ Δn

Δn – разность коэффициентов при формулах веществ в правой и левой частях в химическом уравнении

Константа химического равновесия связана с изменением энергии Гиббса уравнением:

G T о = – RTlnK .

Чем меньше энергия гиббса тем выше константа равновесия

K= 1 ΔG=0 химическое равновесие

K<1 ΔG>0 (равновесие сместится влево) K>1 ΔG<0 (равновесие сместится вправо)

Вопрос 38) Равновесие диссоциации ассоциированных (слабых) электролитов на примере.... Степень диссоциации, константа диссоциации. Закон разбавления Оствалда.

Степень диссоциации a - это отношение числа молекул, распавшихся на ионы N¢ к общему числу растворенных молекул N:

Степень диссоциации выражают в процентах или в долях единицы. Если a =0, то диссоциация отсутствует и вещество не является электролитом. В случае если a =1, то электролит полностью распадается на ионы.

К слабым электролитам в водных растворах относят кислоты: угольную, сернистую, сероводородную, серную (по второй ступени), ортофосфорную, все карбоновые к-ты; основания: гидроксиды магния, бериллия, алюминия, аммония, все гидроксиды d-элементов.

Константа диссоциации – константа равновесия в процессе диссоциации одно и то же.

А m B n(k) = mA n+ + nA m-

К дисс =

Константа диссоциации характеризует способность электролита диссоциировать на ионы. Чем больше константа диссоциации, тем больше ионов в растворе слабого электролита. Например, в растворе азотистой кислоты HNO 2 ионов Н + больше, чем в растворе синильной кислоты HCN, поскольку К(HNO 2) = 4,6·10 - 4 , а К(HCN) = 4,9·10 - 10 .

Для слабых I-I электролитов (HCN, HNO 2 , CH 3 COOH) величина константы диссоциации К д связана со степенью диссоциации и концентрацией электролита c уравнением Оствальда:

Для практических расчетов при условии, что <<1 используется приближенное уравнение

Вопрос 39) Принципы построения шкалы стандартных термодинамических функций образования ионов в водных растворах. Как определить стандартную энтальпию образования …. в водном растворе.

Бесконечно разбавленный раствор – это такой раствор, в котором на каждую молекулу р-ного в-ва приходится на бесконечно большое число молей р-ля. Его характеристики:

1) все электролиты в нём полностью диссоциированы.

2) взаимодействие между ионами полностью отсутствуют.

Любое св-во индивидуального иона, например термодинамическое, не может быть объективно определено. В таких ситуациях прибегают к построению шкалы относительных величин, в которой значение рассматриваемого св-ва для одной из систем постулируется, а значение св-ва других систем отсчитываются от принятого значения. В частности для водных растворов электролитов шкала термодинамических функ. обр. ионов строится на основе следующих допущений:

ΔH 0 (H + ∞ р-р) = 0

S 0 (H + ∞ р-р) = 0

ΔG 0 (H + ∞ р-р) = 0

На основе этого получаем: ΔНобр0НCl(р-р, ст.с)=ΔНобр0Н+(р-р, ст.с)+ΔНобр0Cl-(р-р, ст.с)= ΔНобр0Cl- (р-р, ст.с)

Нашли ΔНобр0Cl- (р-р, ст.с), затем находим ΔНобр0NaCl (р-р, ст.с), а по ней - ΔНобр0Na+ (р-р, ст.с) и т.д.

Получаем шкалу энтальпий образования ионов.

А как нашли ΔНобр0НCl(р-р, ст.с)? ½ Н2(г) + ½ Cl2(г) + ∞Н2О(ж)=НCl (½ Н2(г) + ½ Cl2(г))= ΔНобр0НCl(г) ----->HCl(г)----(+ ∞Н2О(ж)= ΔНраств0НCl(г))---->HCl Получили: ΔНобр0НCl(р-р, ст.с)= ΔНобр0НCl(г)+ ΔНраств0НCl(г)

А как нашли последнюю величину? ΔНобр0НCl(р-р, HCl*nH2O)= ΔНобр0НCl(г)+ ΔНраств0НCl(г) с образованием р-ра состава HCl*nH2O.
Аналогичным путем были найдены стандартные энергии Гиббса образования ионов и стандартные энтропии ионов. Хотя энтропий в-в могут быть только положительными, энтропии ионов могут быть и отрицательными , поскольку они – относительные величины.

Вопрос 40) Шкалы величин рН и рОН. Вычисление рН растворов неассоциированных электролитов на примерах ….

Равновесие процесса диссоциации воды

Н 2 О Н + + ОН -

описывается константой К w , которая носит название “ионное произведение воды”. Ионное произведение воды равно:

К w = [Н + ] [ОН - ].

Для практических целей удобно пользоваться не концентрацией ионов водорода, а её водородным показателем – отрицательным десятичным логарифмом – рН. Величина рН равна:

pH - показатель кислотности или щелочности среды

рН = - lg.

Н + – активность ионов водорода

1) В нейтральной среде pH = - lg10 -7 = 7

2) В кислой среде рН < 7

3) В щелочной среде рН > 7

Однако для практических целей при расчете рН разбавленных растворов обычно используется уравнение

рН + рОН = 14,

где рОН = - lg[О H- ].

4)Тем не менее, в сильнощелочной среде рН может быть немного больше 14, а в очень кислой среде может принимать отрицательные значения.

Вопрос 41) Равновесие диссоциации воды. Ионное произведение воды. Шкалы величин рН и рОН.

Чистая вода, хоть и плохо (по сравнению с растворами электролитов), но может проводить электрический ток. Это вызвано способностью молекулы воды распадаться (диссоциировать) на два иона которые и являются проводниками электрического тока в чистой воде:

H 2 O ↔ H + + OH -

Диссоциация обратима, то есть ионы H + и OH - могут снова образовать молекулу воды. В итоге наступает динамическое равновесие, при котором количество распавшихся молекул равно количеству образовавшихся из H + и OH - ионов.

Ионное произведение воды:

1) Кд =

2) Кд H2O может быть найдена из термодинамич. ф-и:

ΔG 0 дисс = -RT*lnK дисс (используют табличные значения)

3)α<<1 в растворе const

V h 2 o = 1л m h 2 o = 1000г

равн =1000(г/л)/18(г/моль)=55,6 моль/л. = const

Кдисс* = const = * = Kw

* = Kw – ионное произведение воды

Kw = Кдисс* = 1.8*10 -16 * 55.56 = 10 -14

* = Kw = 10 -14

Шкала величин рН и рОН вопрос 40

Вопрос 42) Равновесие диссоциации комплексных соединений. Константа устойчивости и константа нестойкости. Реакции образования комплексных соединений. Приведите примеры получения гидроксокомплекса, амминокомплекса и ацидокомплекса.

Реакции образования комплексных соединений: комплексные соединения образуются и существуют в растворах при сравнительно большом избытке лиганд. Обычно его берут в несколько раз больше того количества, которое необходимо в соответствии со стехиометрическим соотношением. В результате подавляется диссоциация комплексного соединения, и оно стабилизируется.

Разная прочность связи во внутренней и внешней сферах комплексного соединения ведет к различию в характере диссоциации этих частей молекулы. По внешней сфере в водных растворах все комплексные соединения являются сильными электролитами, тогда как диссоциация по внутренней сфере происходит в незначительно степени.

K 2 2K + + [ Zn(CN) 4 ] 2- ; 2- Zn 2+ + 4CN - .

Константа равновесия для последнего процесса (диссоциация комплексного иона) называется константой нестойкости: К равн = К нест = .

Константа равновесия обратного процесса: Zn 2+ + 4CN - = 2- наз. константой устойчивости: К равн. = К уст. = .

Чем больше К уст. (меньше К нест.), тем прочнее комплексное соединение, тем слабее оно диссоциирует. Ясно, что произведение К уст. и К нест. равно единице.

Примеры:

1)Гидроксокомплексы – комплексные соединения, содержащие в качестве лигандов гидроксид-ионы OH - . Гидроксокомплексы образуются в реакциях протолиза из аквакомплексов:

3+ + H 2 O 2+ + H 3 O +

либо при растворении амфотерных гидроксидов в водных растворах гидроксидов щелочных металлов:

Zn(OH) 2 + 2 OH - = 2 -

2) Эту группу комплексных соединений можно подразделить на две части: комплексы с кислородсодержащими лигандами и комплексы с бескислородными (преимущественно галогенидными или псевдогалогенидными) лигандами . Например, к ацидокомплексам с кислородсодержащими лигандами относятся дитиосульфатоаргентат(I)-ион, который получается по обменной реакции:

Ag + + 2 SO 3 S 2 - = 3 -

и гексанитрокобальтат(III)-ион, который осаждается в виде мелких желтых кристаллов калиевой соли при смешивании растворов, содержащих хлорид кобальта(II), нитрит калия и уксусную кислоту:

CoCl 2 + 7 KNO 2 + 2 CH 3 COOH =
= K 3 ¯ + NO­ + 2 KCl + 2 CH 3 COOK + H 2 O

3) Аммиачные комплексы обычно получают при взаимодействии солей или гидроксидов металлов с аммиаком в водных или неводных растворах , либо обработкой тех же солей в кристаллическом состоянии газообразным аммиаком :

AgCl(т) + 2 NH 3 . H 2 O = Cl + 2 H 2 O

Cu(OH) 2 (т) + 4 NH 3 . H 2 O = (OH) 2 + 4 H 2 O

NiSO 4 + 6 NH 3 . H 2 O = SO 4 + 6 H 2 O

CoCl 2 + 6 NH 3 (г) = Cl 2

В тех случаях, когда аммиачный комплекс неустойчив в водном растворе, его можно получить в среде жидкого аммиака:

AlCl 3 (s) + 6 NH 3 (ж) = Cl 3 (s)

Вопрос 43) Буферные растворы и их св-ва. Расчет рН буферного раствора состава ….

Буферными растворами называют растворы, имеющие постоянное значение рН, не зависящие от разбавления и небольших добавок сильных кислот и щелочей.

1) Они могут быть: смеси слабой кислоты и ее соль

CH3COOH + CH3COONa pH <7

2) Слабое основание и его соль

NH4OH+NH4Cl pH<7

Пример: HCN + KCN

Kдисс HCN = * /

Кдисс * /

В присутствии сильного электролита KCN диссоц. HCN подавляется по принципу Ле- Шателье Брауни. Тогд концентрацию HCN можно приравнять к концентрации кислоты исход.

Равн ̴̴ С HCN исх = С кислоты

Равн ̴ С KCN исх = C соли

Кдисс * (Скислоты/С соли)

Кдисс * (С основание/С соли)

Скислоты/С соли = const при разбавлении раствора

H+ + CN- à HCN в кислой среде

OH- + H+ à H2O в щелочной среде

Практически не влияет на рН

Как видно:

1) при разбавлении р-ра водной ведет к одинаковому уменьшению С к-ты и С соли , а отношение С к-ты /С соли не изменится и рН станет прежним.

2) добавим в буферный р-р несколько капель НСl, при этом часть соли превратится в к-ту; в результате С к-ты немного возрастает, а С соли – уменьшится, а отношение С к-ты /С соли

3) Подобное произойдет при вливании в буферную смесь нескольких капель р-ра NаОН: С соли возрастает, С к-ты мало уменшится, а отношение С к-ты /С соли и соответственно рН буферного р-ра изменится мало.

Вопрос 44) Равновесие растворения и диссоциации малорастворимого электролита. Произведение растворимости. Связь ПР и растворимости (на примере …..) .

АmBn(k)↔ AmBn↔ mA(n+) + nB(m-)- насыщ.р-р
промежуточный раствор
АmBn(k) ↔ mA(n+) + nB(m-)

K равн = m * n /

ПР= произведение растворимости (ПР).

Так как = const,то

K равн * = m * n = ПР

ПР = m * n

Таким образом, произведение растворимости (ПР) есть константа равновесия растворения и диссоциации малорастворимого электролита. Оно численно равно произведению концентраций (активностей) ионов в степенях стехиометрических коэффициентов в насыщенном водном растворе данного малорастворимого электролита. Пусть растворимость(кнцентрация насыщенного раствора при данной температуре) электролита равна Р моль/л. Тогда:

ПР= (mp) m (np) n = m m * n n * p m+n

Отсюда находим связь ПР с растворимостью: .

Если ПК > ПР – выпадет осадок, ПК < ПР − осадок растворится, ПК = ПР − установится равновесие. (

Вопрос 45) Условия выпадения осадка и растворения малорастворимых электролитов. Связь ПР с растворимостью на примере ….

Если ПК > ПР – выпадет осадок, ПК < ПР − осадок растворится, ПК = ПР − установится равновесие. (ПК = n . m . ПК – произведение концентраций).

Вопрос 46) Произведение растворимости как константа равновесия растворения и диссоциации малорастворимого соединения. Связь ПР с растворимостью на примере ….

Вопрос 44-45

Вопрос 47) Польный (необратимый) гидролиз. Взаимное усиление гидролиза (совместный гидролиз). Приведите примеры.

Гидролиз – обменная реакция взаимодействия растворенного вещества (например, соли) с водой. Гидролиз происходит в тех случаях, когда ионы соли способны образовывать с Н + и ОН - ионами воды малодиссоциированные электролиты.

Гидролиз некоторых солей, образованных слабыми основаниями и слабыми кислотами, протекает необратимо.

Необратимо гидролизуется, например, сульфид алюминия:

Al 2 S 3 + 6H 2 O 2Al(OH) 3 + 3H 2 S .

Необратимо протекает гидролиз, если одновременно ввести в раствор соль, образованную тяжелым металлом, и соль, образованную слабой летучей кислотой, например,

2AI CI 3 +3Na 2 S + H 2 O = Al 2 S 3 +6NaCI

CH3COONH4 = CH3COO + NH4

SbCl 3 + H 2 O SbOCl + 2HCl.

Взаимное усиление гидролиза . Допустим, что в разных сосудах установились равновесия:

CO 3 2– + H 2 O HCO 3 – + OH –

Al 3+ + H 2 O AlOH 2+ + H +

Обе соли гидролизованы незначительно, но если растворы смешать, то происходит связывание ионов H + и OH – . В соответствии с принципом Ле – Шателье оба равновесия смещаются вправо, и гидролиз протекает полностью:

2 AlCl 3 + 3 Na 2 CO 3 + 3 H 2 O = 2 Al(OH) 3 + 3 CO 2 + 6 NaCl

Это называется взаимным усилением гидролиза.

2FeCl 3 +3Na 2 CO 3 +3H 2 O=2Fe(OH) 3 +6NaCl+3CO 2
2Fe 3+ +3CO 3 2- +3H 2 O=2Fe(OH) 3 +3CO 2
Al 2 (SO 4) 3 +3Na 2 CO 3 +3H 2 O=2Al(OH) 3 +3Na 2 SO 4 +3CO 2
2Al 3+ +3CO 3 2- +3H 2 O=2Al(OH) 3 +3CO 2
Cr 2 (SO 4) 3 +3Na 2 S+6H 2 O=2Cr(OH) 3 +3Na 2 SO 4 +3H 2 S
2Cr 3+ +3S 2- +6H 2 O=2Cr(OH) 3 +3H 2 S

2CuCl 2 + 2Na 2 CO 3 + H 2 O → (CuOH) 2 CO 3 + CO 2 + 4NaCl

Вопрос 48) Польный (необратимый) гидролиз. Приведите два примера. Совместный гидролиз двух солей с образованием а) гидроксида металла (+3), б) основного карбоната металла (+2).

а) 2NaCl 3 (кр) +3Na 2 CO 3 (кр) +3H 2 O (ж) =2Al(OH) 3 (тв) + 3СO 2 (г) + 6NaCl (р - р)

б) 2CuCl 2 + 2Na 2 CO 3 + H 2 O = (CuOH) 2 CO 3 ↓ + CO 2 + 4NaCl

Вопрос 49) Гидролиз солей одновременно по катиону и аниону (обратимый гидролиз). Расчет константы гидролиза, степени гидролиза и рН растворов таких солей на примере …

Соли, образованные сильным основанием и слабой кислотой, например, CH 3 COONa, Na 2 CO 3 , Na 2 S, KCN гидролизуются по аниону:

СН 3 СООNa + НОН СН 3 СООН + NaОН (рН > 7).

AB + H2O = AOH + HB

Кравн = [АОН]* / *

Kравн[ H2O] = К гидр = const

Kгидр = * /

Kt + + A - + H 2 O = KtOH + HA

Константа гидролиза имеет вид:

Пусть общая концентрация соли, гидролизованной одновременно по катиону и аниону, равна с моль/л, степень гидролиза составляет h . Тогда:

Отсюда: . Значение константы гидролиза не зависит от концентраций солей гидролизованной, или по другому степень гидролиза соли, подвергающейся гидролизу по катиону и аниону одновременно, будет одной и той же при любых концентрациях соли в растворе.

Вопрос 51) Гидролиз солей по аниону. Способы подавления гидролиза. Расчет константы гидролиза, степени гидролиза и рН растворов солей, гидролизованных по аниону на примере ….

Соль образована сильным основанием и слабой кислотой (NaCN K2SO3 Na3PO4)

NaCN = Na+ + CN-

CN- + HOH = HCN + OH-

Способы подавления гидролиза:

1) охлаждение раствора;

2) добавление кислоты в раствор для подавления гидролиза по катиону, добавление щелочи в раствор для подавления гидролиза по аниону.

Общий вид гидролиза по аниону:

Тогда константа гидролиза:

Произведение дает нам константу ионного произведения воды – К W , а дробь - это константа диссоциации кислоты . Таким образом мы получаем:

Т.к = и = Ссоли

Т.к αгидр <1 мала

Кг = =

Находим и рН раствора

Степень гидролиза () равна отношению числа гидролизованных молекул к общему числу растворенных молекул. При гидролизе по аниону не велика. Чем слабее кислота (или основание), тем больше степень гидролиза.

Рассматривается многоатомная молекула или ее фрагмент в которой центральный атом А связан с каждым из атомов В, которые между собой не связаны.В могут быть и одинаковыми и разными.

Электронные пары валентного уровня делятся на связывающие(по числу двухэлектронных связей с атомами В) и на неподеленные-не участвующие в образовании связей. Минимуму отталкивания отвечает такое расположение пар вокруг центрального атома, при котором они максимально удалены друг от друга.

Определяем Стерическое число равное сумме присоединенных атомов и неподеленных электронных пар.

Согласно значению стерического числа определяем конфигурацию молекулы. 2-линейная,3-плоская тригональная, 4-тетраэдрическая,5-тригональная бипирамида.6-октаэдр.

18 Силы межмолекулярного взаимодействия имеют электрическую природу. Они характеризуют электростатическое притяжение или отталкивание, возникающее между полярными молекулами и неполярными, в которых возникают диполи под действием внешних факторов. Такие силы называют силами Ван-дер-Ваальса (в честь ученого, который предложил уравнение состояния газа, учитывающее межмолекулярное взаимодействие).
На сравнительно больших расстояниях между молекулами, когда их электронные оболочки не перекрываются, проявляется только действие сил притяжения. Если молекулы полярны, то возникает электростатическое взаимодействие их друг с другом, называемоеориентационным . Оно тем значительнее, чем больше дипольный момент молекул( Мерой полярности связи служит электрический момент диполя μсв, равный произведению эффективного заряда δ на длину диполя lд μсв= δ* lд) . Повышение температуры ослабляет это взаимодействие, так как тепловое движение нарушает взаимную ориентацию молекул. Притяжение полярных молекул быстро уменьшается с расстоянием между ними. Теория (В. Кеезом, 1912 г.) дает следующее соотношение для энергии ориентационного взаимодействия между двумя одинаковыми полярными молекулами:

Где m – дипольный момент молекулы; N A – число Авогадро; R – универсальная газовая постоянная; Т – абсолютная температура; r – расстояние между двумя взаимодействующими молекулами.

Это соотношение выполняется вполне точно для условий высоких температур и небольших давлений, когда расстояние между диполями значительно больше длины диполя. Неполярные молекулы, попав в поле соседних полярных частиц (молекул, ионов), поляризуются, в них возникает индуцированный дипольный момент. Взаимодействие индуцированных диполей тем значительнее, чем легче деформируется молекула. Энергия взаимодействия таких молекул возрастает с увеличением дипольного момента и быстро уменьшается с ростом расстояния r между ними, но от температуры не зависит, так как наведение диполей происходит при любом пространственном расположении молекул. Для энергии индукционного взаимодействия между двумя одинаковыми полярными молекулами следующее соотношение:


где a – поляризуемость молекулы.

Энергия межмолекулярного притяжения не ограничивается слагаемыми U ср, U инд. Для таких неполярных веществ, как Ne и Ar, оба этих слагаемых равны нулю, тем не менне благородные газы сжижаются, что свидетельствует о наличии еще одной составляющей межмолекулярных сил.
Эта составляющая связана с движением электронов в молекулах. Систему электрон – ядро можно рассматривать как диполь, отрицательный полюс которого (электрон) быстро перемещается. В молекулах, находящихся на небольшом расстоянии друг от друга, движение электронов становится в известной мере согласованным, так что диполи «ядро-электрон» оказываются часто обращенными друг к другу противоположно заряженными полюсами. Это обусловливает притяжение молекул. Данное взаимодействие называют дисперсионным (это название связано с тем, что колебания электрических зарядов вызывают дисперсию света – различное преломление лучей света, имеющих разные длины волн). Дисперсионные силы действуют между частицами любого вещества. Энергия дисперсионного взаимодействия между двумя одинаковыми частицами приближенно выражается уравнением

Где – постоянная Планка; n 0 – частота колебаний молекулы, отвечающая нулевой энергии частицы Е 0 , т. е. энергии при T = 0 (нулевая энергия колеблющейся частицы выражается соотношением E 0 = hn 0 /2); a – поляризуемость частицы, величину hv 0 приближенно можно считать равной энергии ионизации.

Кроме сил притяжения между молекулами действуют силы отталкивания. Энергия отталкивания приблизительно пропорциональна r –12 . Суммарная энергия межмолекулярного взаимодействия описывается соотношением

Где m и n –постоянные,зависящиеотприродывещества.

Уравнениеназывается формулойЛеннарда-Джонса (1924г.).
Энергия межмолекулярного взаимодействия составляет, как правило, 8-16 кДж/моль. Вклад индукционного взаимодействия обычно невелик.

19 Основные классы неорганических веществ

Оксидами называются соединения, состоящие из двух элементов, одним из которых является кислород, имеющий степень окисления -2. По функциональным признакам оксиды подразделяются на солеобразующие и несолеобразующие (безразличные). Солеобразующие оксиды, в свою очередь, подразделяются на основные, кислотные и амфотерные.

Названия оксидов образуются с применением слова «оксид» и русского названия элемента в родительном падеже с указанием римскими цифрами валентности элемента, например: SO2 – оксид серы (IV), SO3 – оксид серы (VI), CrO – оксид хрома (II), Cr2O3 – оксид хрома (III).

Основными называются оксиды, взаимодействующие с кислотами (или с кислотными оксидами) с образованием солей.

К основным оксидам относятся оксиды типичных металлов, им соответствуют гидроксиды, обладающие свойствами оснований (основные гидроксиды), причем степень окисления элемента не изменяется при переходе от оксида к гидроксиду.

Кислотными называются оксиды, взаимодействующие с основаниями (или основными оксидами) с образованием солей.

Кислотные оксиды представляют собой оксиды неметаллов или переходных металлов в высоких степенях окисления, им соответствуют кислотные гидроксиды, обладающие свойствами кислот. Например,S+6O3 → H2S+6O4; N2+5O5 → HN+5O3, причем степень окисления элемента не изменяется при переходе от оксида к гидроксиду

Элементы, проявляющие в соединениях металлические и неметаллические свойства, называются амфотерными , к ним относятся элементы главных подгрупп периодической системы – Be, Al, Ga, Ge, Sn, Pb,Sb, Bi, Po и др., а также большинство элементов побочных подгрупп – Cr, Mn,Fe, Zn, Cd, Au и др.

Амфотерные оксиды обладают двойственной природой; они одновременно способны к реакциям, в которые вступают как основные, так и кислотные оксиды, т.е. реагируют и с кислотами (кислотными оксидами) и со щелочами (основными оксидами) с образованием двух рядов солей

Основаниями (основными гидроксидами) с позиции теории электролитической диссоциации являются вещества, диссоциирующие в растворах с образованием гидроксид-ионов ОН-.

По современной номенклатуре их принято называть гидроксидами элементов с указанием, если необходимо, валентности элемента (римскими цифрами в скобках): КОН – гидроксид калия, гидроксид натрия NaOH, гидроксид кальция Ca(OH)2, гидроксид хрома (II) – Cr(OH)2, гидроксид хрома (III) – Cr(OH)3.

Гидроксиды металлов принято делить на две группы: растворимые в воде (образованные щелочными и щелочноземельными металлами - Li, Na, K, Cs, Rb, Fr, Ca, Sr, Ba и поэтому называемые щелочами) инерастворимые в воде. Основное различие между ними заключается в том, что концентрация ионов ОН- в растворах щелочей достаточно высока, для нерастворимых же оснований она определяется растворимостью вещества и обычно очень мала. Тем не менее, небольшие равновесные концентрации иона ОН- даже в растворах нерастворимых оснований определяют свойства этого класса соединений.

По числу гидроксильных групп (кислотность), способных замещаться на кислотный остаток, различают:

Однокислотные основания – KOH, NaOH;

Двухкислотные основания – Fe(OH)2, Ba(OH)2;

Трехкислотные основания – Al(OH)3, Fe(OH)3

Кислотами (кислотными гидроксидами) с позиции теории электролитической диссоциации называются вещества, диссоциирующие в растворах с образованием ионов водорода.

Кислоты классифицируются по их силе, по основности и по наличию или отсутствию кислорода в составе кислоты.

По силе кислоты делятся на сильные и слабые. Важнейшие сильные кислоты – азотная HNO3, серная H2SO4, и соляная HCl.

По наличию кислорода различают кислородсодержащие кислоты (HNO3, H3PO4 и т.п.) и бескислородные кислоты (HCl, H2S, HCN и т.п.).

По основности, т.е. по числу атомов водорода в молекуле кислоты, способных замещаться атомами металла с образованием соли, кислоты подразделяются на одноосновные (например, HNO3, HCl), двухосновные (H2S, H2SO4), трехосновные (H3PO4)