Относительно небольшое число видов и особей гусеобразных, поганок, голенастых, хищников, куликов, чаек, воробьиных зимуют в южных районах бывшего СССР по берегам Черного моря, в Закавказье, на юге Каспия, в некоторых районах Средней Азии. Подавляющее большинство видов и особей наших птиц зимует за пределами страны на Британских островах и в Южной Европе, в Средиземноморье, во многих районах Африки и Азии. Например, в Южной Африке зимуют многие мелкие птицы из европейской части бывшего СССР (пеночки, камышовки, ласточки и др.), пролетающие от мест зимовок до 9-10 тыс. км. Пролетные пути некоторых видов еще длиннее. Гнездящиеся по побережьям Баренцева моря полярные крачки - Sterna paradisea зимуют у побережья Австралии, пролетая лишь в одну сторону до 16-18 тыс. км. Почти такой же пролетный путь у гнездящихся в тундрах Сибири бурокрылых ржанок - Charadrius dominica, зимующих в Новой Зеландии, и у колючехвостых стрижей - Hirundapus caudacutus, из Восточной Сибири отлетающих в Австралию и Тасманию (12-14 тыс. км); часть пути они пролетают над морем.
Во время миграций птицы летят с обычными скоростями, чередуя перелет с остановками для отдыха и кормежки. Осенние миграции обычно совершаются с меньшей скоростью, чем весенние. Мелкие воробьиные птицы при миграциях за сутки перемещаются в среднем на 50-100 км, утки - на 100-500 км и т. п. Таким образом, в среднем за сутки птицы тратят на перелет относительно небольшое время, иногда всего лишь 1-2 ч. Однако некоторые даже мелкие наземные птицы, например американские древесные славки - Dendroica, мигрируя над океаном, способны пролетать без остановки 3-4 тыс. км. за 60-70 ч непрерывного полета. Но такие напряженные миграции выявлены лишь у небольшого числа видов.
Высота полета зависит от многих факторов: вида птицы и пелетных возможностей, погоды, скорости воздушных потоков на разной высоте и т. п. Наблюдениями с самолетов и с помощью радаров было установлено, что миграции большинства видов проходят на высоте 450-750 м; отдельные стаи могут пролетать и совсем низко над землей. Значительно реже пролетных журавлей, гусей, куликов, голубей отмечали на высотах до 1,5 км и выше. В горах стаи летящих куликов, гусей, журавлей отмечали даже на высоте 6- 9 км над уровнем моря (на 9-м километре содержание кислорода на 70% меньше, чем на уровне моря). Водные птицы (гагары, поганки, чистиковые) часть пролетного пути проплывают, а коростель проходит пешком. Многие виды птиц, обычно активные только в дневное время, мигрируют ночью, а днем кормятся (многие воробьиные, кулики и др.), другие и в период миграции сохраняют обычную суточную ритмику активности.
У перелетных птиц в период подготовки к миграциям изменяется характер обмена веществ, приводящий при усиленном питании к накоплению значительных жировых запасов. При окислении жиры выделяют почти вдвое больше энергии, чем углеводы и белки. Резервный жир по мере надобности поступает в кровь и доставляется в работающие мышцы. При окислении жиров образуется вода, чем компенсируется потеря влаги при дыхании. Особенно велики запасы жира у видов, вынужденных во время миграции длительное время лететь без остановок. У уже упоминавшихся американских древесных славок перед полетом над морем запасы жира могут составлять до 30-35% их массы. После такого -броска- птицы усиленно кормятся, восстанавливая энергетические резервы, и опять продолжают перелет.
Изменение характера обмена, подготавливающего организм к перелету или к условиям зимовки, обеспечивается сочетанием внутренней годовой ритмики физиологических процессов и сезонных изменений условий жизни, в первую очередь изменением длины светового дня (удлинением - весной и укорочением - в конце лета); вероятно, определенное значение имеет и сезонное изменение кормов. У накопивших энергетические ресурсы птиц под влиянием внешних стимулов (изменение длины дня, погода, недостаток кормов) наступает так называемое -перелетное беспокойство-, когда поведение птицы резко меняется и возникает стремление к миграции.
У подавляющего большинства кочующих и перелетных птиц отчетливо выражен гнездовой консерватизм . Он проявляется в том, что размножавшиеся птицы на следующий год возвращаются с зимовки на место предыдущего гнездования и либо занимают старое гнездо, либо поблизости строят новое. Молодые, достигшие половой зрелости птицы возвращаются на свою родину, но чаще поселяются на каком-то расстоянии (сотни метров - десятки километров) от того места, где они вылупились ( рис. 63). Менее отчетливо выраженный у молодых птиц гнездовой консерватизм позволяет виду заселять новые, пригодные для него территории и, обеспечивая перемешивание популяции, предотвращает инбридинг (близкородственное скрещивание). Гнездовой же консерватизм взрослых птиц позволяет им гнездиться в хорошо знакомом районе, что облегчает и поиски пищи, и спасение от врагов. Существует и постоянство мест зимовок.
Как птицы ориентируются во время миграций, как выбирают направление перелета, попадая в определенный район на зимовку и возвращаясь за тысячи километров на место гнездования- Несмотря на разнообразные исследования, ответа на этот вопрос пока нет. Очевидно, у перелетных птиц есть врожденный миграционный инстинкт, позволяющий им выбирать нужное общее направление миграции. Однако этот врожденный инстинкт под влиянием условий среды, видимо, может быстро изменяться.
Яйца оседлых английских крякв были инкубированы в Финляндии. Выросшие молодые кряквы, как и местные утки, осенью улетели на зимовку, а следующей весной значительная их часть (36 из 66) вернулась в Финляндию в район выпуска и там загнездилась. В Англии ни одна из этих птиц не была обнаружена. Черные казарки перелетные. Их яйца инкубировались в Англии, и молодые птицы осенью вели себя на новом месте как оседлые птицы. Таким образом, объяснить и само стремление к миграции, и ориентировку во время перелета только врожденными рефлексами пока нельзя. Экспериментальные исследования и полевые наблюдения свидетельствуют, что мигрирующие птицы способны к астронавигации: к выбору нужного направления перелета по положению солнца, луны и звезд. При пасмурной погоде или при изменении картины звездного неба при опытах в планетарии способность к ориентации заметно ухудшалась.
Крылатые странники
Механизмы ориентации птиц
Самый трудный, до сих пор таящий множество загадок вопрос в изучении миграций птиц - это вопрос об их ориентации. Многие годы ученые бились над его разрешением, то ища специальные "органы ориентации", то приписывая феноменальные способности перелетных птиц инстинктам, "врожденному чувству направления". Как птицы узнают направление к местам гнездования и зимовок? Обучение молодых птиц старыми играет здесь ничтожную роль, так как часто молодые улетают раньше взрослых и путешествуют отдельно. Запомнить дорогу по видимым приметам птицы тоже не могут, так как многие летят ночью, за облаками, а возвращаются к местам гнездования другой дорогой. Многие орнитологи проводили опыт с птицами, завозя их в закрытых ящиках за сотни километров от дома. Ящики иногда вращали по дороге, чтобы исключить всякое запоминание. Скворцов увозили на 100-300 км от гнезда, соловьев - на 270 км, городских ласточек - на 317 км. Все они довольно быстро возвращались домой. Обыкновенные буревестники из Венеции вернулись к побережью Уэльса, пролетев 6000 км за 14 дней. Альбатросы вернулись на остров Мидуэй, пролетев 6590 км за 32 дня. Обыкновенные крачки возвращались, преодолевая расстояние в 600 км, серебристые чайки - 1300-1400 км.
О механизмах ориентации птиц при перелетах существует множество гипотез. Некоторые из них давно отброшены как не подтвержденные фактами, другие выглядят более убедительно. Однако вопрос о навигации птиц до сих пор нельзя считать решенным. Рассмотрим несколько гипотез.
Ориентация по ландшафтным признакам кажется наиболее естественной с точки зрения человека. Существуют так называемые направляющие линии: долины рек, побережья морей, распадки в горах и другие крупные детали ландшафта, которые птица может видеть с воздуха. Но чтобы ориентироваться по этим линиям, птица должна хотя бы раз увидеть их. Таким образом, ориентация молодых птиц, летящих самостоятельно, по этому признаку исключается. Птицы, летящие ночью, тоже не могут использовать направляющие линии. Многие морские птицы прекрасно ориентируются над открытым морем, где нет никаких примет. В этом случае гипотеза тоже не подтверждается.
Инфракрасное тепловое излучение с юга не может сигнализировать птицам о выборе пути, так как птицы не обладают повышенной чувствительностью к инфракрасной части спектра.
Итальянские ученые выдвинули гипотезу о том, что определенные области поверхности Земли имеют специфический запах. Орнитологи из ФРГ предположили, что обонятельные ощущения могут помочь птицам находить родные места. Они поставили опыт по изучению чувства дома (хоминга) у голубей. Птиц, разделенных на две группы, контрольную и опытную, отвезли на 180 км от голубятни. Опытной группе предварительно перерезали обонятельные нервы. Оперированные голуби сильно отклонялись от курса в отличие от птиц контрольной группы. Но эксперимент, проведенный по той же схеме со стрижом, не подтвердил эту гипотезу. Большинство орнитологов ее не принимает, так как у птиц обоняние вообще развито хуже, чем у других позвоночных.
Гипотеза обладания врожденным чувством направления ничем не доказана.
Одна из самых удивительных и загадочных способностей птиц – миграция. Каждый год они собираются стаями и преодолевают тысячи километров, чтобы переждать холода в более благоприятном климате и при этом никогда не ошибаются в выбранном пути.
Зачем же птицы путешествуют?
Основная причина перелета – недостаток корма. В холодное время года трудно добыть насекомых, фрукты или семена в нужном количестве. Но южнее, они в избытке. Некоторые птицы не переносят длительный перелёт и погибают, но большинство выживают и возвращаются с теплом.
Чтобы выдержать длительное путешествие у птицы должно быть хорошее здоровье, значительный жировой запас, который в пути является единственным источником энергии и новое оперение. Поэтому сразу, после того как птенцы подросли, они занимаются своим обновлением и подготовкой.
Так как же птицы ориентируются в пространстве?
Известно, что птицы всегда возвращаются на старое обжитое место и это касается не только перелетных. Голуби, например, не улетают на зимовку, но ориентируются на местности не хуже и могут найти свой дом на расстоянии более 100 км. До недавнего времени орнитологи считали, что птиц ведут инстинкты и способность ориентироваться по солнцу и звездам. Но последние исследование указывают на то, что птицы чувствуют магнитное поле земли, линии которого располагаются по направлению от севера к югу и служат направляющими.
Улавливать магнитное поле птицам помогают особые кристаллы, расположенные на переносице – магнетиты, они воспринимают информацию как компас. Это помогает птице определять не только направлении полета, а и настоящее местоположение. В вопросе геомагнитной ориентации осталось еще много вопросов и решения на них не найти пока ни в одной книге, но ученые не сдаются и, не обращая внимание на мнение скептиков, продолжают свои исследования.
Вы никогда не задумывались над тем, как птицы находят правильный путь, преодолевая безбрежные океаны и обширные пустыни во время своих перелётов и миграций (подробнее о )? Какими ориентирами они пользуются, какими органами чувств руководствуются? Нередко этими вопросами задаются охотники, и наша сегодняшняя публикация готова дать ответ на этот вопрос…
Важность необходимости умения ориентироваться в пространстве для птиц
Для птицы хорошо ориентироваться в пространстве – означает, прежде всего, иметь надежную информацию об окружающей их обстановке. Ведь, изменения её в одних случаях могут оказаться роковыми для птицы, в других — напротив, благоприятными, но и о тех, и о других ей нужно своевременно знать. Поведение животного будет зависеть от того, как его органы чувств воспримут эти изменения и как оценит их высший орган ориентации – мозг. Понятно, что успех в борьбе за существование будет сопутствовать той особи, чьи органы чувств и мозг быстрей оценят ситуацию и чья ответная реакция не заставит себя ждать. Вот почему, говоря об ориентации животных в пространстве, мы должны иметь в виду все 3 её компонента – ориентир раздражитель, воспринимающий аппарат, и ответную реакцию.
Несмотря на то, что в процессе эволюции все эти компоненты складывались в определенную сбалансированную систему, далеко не все ориентиры воспринимаются птицами, так как пропускная способность их органов чувств весьма ограничена.
Так, птицы воспринимают звуки частотой до 29000 ГЦ, тогда как летучие мыши – до 150 000 Гц, а насекомые – ещё выше – до 250 000 Гц. Хотя, с физической точки зрения слуховой аппарат птицы воздухе и весьма совершенен, в воде он отказывает, и звуковая волна идет к слуховой клетке неудобным путем – через всё тело, тогда как барабанная перепонка и слуховой проход оказываются полностью заблокированными. А, как бы помог рыбоядным птицам подводный слух! Известно, что дельфины с помощью слуха могут точно определять вид рыбы, её размеры, её местоположение. Слух для них вполне заменяет зрение, тем более, что возможности последнего ещё более ограничены – просматриваемое пространство, к примеру, для пустельги и сипухи, составляет 160 градусов, для голубей и воробьиных – около 300 градусов, у дятлов – до 200 градусов. А, угол бинокулярного зрения, то есть зрения двумя глазами, позволяющего особенно точно рассмотреть предмет, составляет у большинства птиц 30-40 градусов, и только у сов, с их характерным лицом – до 60 градусов.
Ещё меньше возможностей у обоняния у птиц – направление ветра, густые заросли и прочие помехи сильно затрудняют ориентацию по запахам. Даже грифы урубу, спускающиеся к падали с огромной высоты, руководствуются тонкой струйкой поднявшегося кверху запаха, и те далеко не всегда могут пользоваться этим видом ориентации.
Отсутствие необходимых органов чувств приводит к тому, что многие из природных явлений, как ориентиры, птицами не используются или используются недостаточно. Экспериментальные данные, отдельные полевые наблюдения дают весьма противоречивую картину. В определенных ситуациях, например, на ориентацию птиц влияют мощные радиостанции, однако – такое происходит не всегда и не во всех случаях. Птицы, безусловно, воспринимают изменения давления, но как тонко может барический градиент использоваться в качестве ориентира, совершенно неясно. Таким образом, ориентационные способности каждой отдельно взятой особи весьма ограничены . Между тем, птицам с их открытым образом жизни, окруженным массой врагов и других житейских неприятностей, надежная ориентация – вопрос жизни и смерти. И, зачастую их недостаточные индивидуальные возможности корректируются благодаря общению с другими особями, в стае, в гнездовой колонии.
Каждый охотник знает, что к одиночной птице гораздо легче подобраться, чем к стае, которая имеет множество ушей и глаз, и где предупреждающий крик или взлет одной особи может переполошить остальных. Различные крики, позы, яркие пятна в окраске обеспечивают птицам совместное поведение в стае и связь между ними. Создается, как бы групповая, вторичная ориентация, где возможности ориентироваться, индивидуальный опыт одной птицы значительно возрастают за счёт других птиц. Здесь уже не обязательно видеть самого хищника, достаточно слышать предупреждающий крик соседа. Конечно, сосед кричит вовсе не потому, что хочет предупредить других птиц – у него это естественная реакция на врага, однако, остальные птицы воспринимают этот крик именно, как сигнал об опасности.
Групповая или вторичная ориентация у птиц
Дело еще больше усложняется и возможности одной особи еще более возрастают, когда связь устанавливается между птицами разных видов внутри сообщества. К примеру, крик мелкой птицы на сову собирает в лесу весьма разнообразное общество – синиц, славок, поползней, зябликов, ворон, соек и даже мелких хищников. Точно такое же понимание устанавливается между куликами, чайками и воронами на морских отмелях, между различными дроздами и т.д. В лесу роль сигнальщика играет сорока – крик которой, к примеру, при приближении крупного хищника или человека воспринимается не только самыми разнообразными птицами, но и млекопитающими. Здесь групповая ориентация идет ещё дальше.
Основные факторы птиц для ориентации в пространстве
Зрение, как способ ориентации в пространстве
По остроте зрения птицы не имеют себе равных. Общеизвестны удивительные способности в этом отношении различных хищников. Сокол сапсан видит небольших птиц на расстоянии свыше километра. У большинства мелких воробьиных острота зрения в несколько раз превышает остроту зрения человека. Даже голуби различают 2 линии под углом в 29 градусов, тогда как для человека этот угол должен быть не менее 50 градусов.
К тому же, птицы обладают цветным зрением. Можно, к примеру, научить цыплят клевать красные зерна и не клевать голубые или белые, в направлении красного экрана подбегать к голубому и т.п. Косвенно это доказывается и удивительным разнообразием окраски птиц, представленной не только всеми цветами спектра, но и самыми разнообразными их сочетаниями. Окраска играет большую роль в совместном поведении птиц и используется ими, как сигнал при общении. Наконец, можно добавить, что недавними опытами польских исследователей, подтвердилась способность птиц воспринимать инфракрасную часть спектра, и следовательно — видеть в темноте. Если это действительно так, то тогда становится понятной загадочная способность птиц жить в темноте или при сумеречном освещении. Помимо сов, к этому видимо, способны и другие птицы – в условиях долгой Полярной ночи в Арктике остаются зимовать белая и тундряная куропатки, ворон, кречет, чечетка, пуночка, различные чистики.
Эти особенности зрения птиц обеспечиваются замечательным анатомическим строением их глаз. Прежде всего, птицы обладают относительно огромными глазными яблоками, составляющими у сов и соколов, к примеру, около 1/30 от веса тела, у дятла – 1/66, у сороки – 1/72. Глаз птицы имеет большое количество чувствующих клеток колбочек, необходимых для острого зрения, снабженных красными, оранжевыми, зелеными, или голубыми масляными шариками. Специалисты полагают, что масляные шарики дают возможность птице различать цвета.
Другой особенностью глаза птицы являются быстрая и точная его настройка – аккомодация . Это осуществляется изменением кривизны хрусталика и роговицы. Быстрая аккомодация позволяет, к примеру, соколу, бьющему с большой высоты по утиной стайке, отчетливо видеть птиц и правильно оценивать расстояние в любой момент своего броска. У степных птиц в сетчатке глаза имеется также особая плоска чувствительных клеток, позволяющая особенно отчетливо и на большом расстоянии рассматривать горизонт и удаленные предметы. Глаза бакланов, чистиковых, уток (о ), гагар, охотящихся за рыбой под водой, имеют специальные приспособления обеспечивающие подводное зрение птицам.
Хорошее зрение хищных птиц используется в .
Обоняние, как способ ориентации в пространстве
Обоняние птиц до сих пор остается мало исследованным и весьма загадочным. Длительное время считалось, что птицы обладают плохим обонянием, однако новые эксперименты говорят об обратном. Певчие птицы, утки, некоторые куриные хорошо различают запахи, к примеру, гвоздичного и розового масла, бензальдегида…
Утки способны находить коробку с пищей по особому запаху с расстоянии в 1,5 метра и направляться прямо к ней. Хорошим обонянием обладают грифы урубу, некоторые козодои, буревестники, чайки. Альбатросы собираются на брошенное в воду сало с расстояния в радиусе 10-ка километров. Охотникам также известны случаи, когда вороны находили закопанные в снег куски мяса. Кедровки и кукши довольно точно отыскивают в вольере кусочки пищи, запрятанные в подстилку, руководствуясь при этом исключительно своим обонянием.
Вкус, как способ ориентации в пространстве
Птицы, в общем, обладают посредственно развитым вкусом и только в отдельных группах, как например, у зерноядных птиц, хищников и благородных уток, он достигает некоторого развития.
Осязание, как способ ориентации в пространстве
Большое количество нервных окончаний в виде осязательных телец располагается в коже птиц, в основании перьев, в костях конечностей. С их помощью птица может определять, например, давление воздушной струи, силу ветра и температуру воздуха. Эти нервные окончания очень разнообразны по строению и функциям, и существует мнение, что именно среди них следует искать неизвестные пока органы восприятия электрических, магнитных полей.
Большое количество осязательных телец располагается на кончике клюва бекаса, вальдшнепа и других куликовых, добывающих пищу зондированием влажной земли, тины и грязи. У пластинчатоклювых, например, у кряквы, кончик клюва также покрыт чувствительными тельцами, отчего верхнечелюстная кость, как и у вальдшнепа, выглядит совершенно ячеистой.
Воспринимая единую по своей сути среду в виде отдельных раздражителей, ориентиров, органы пространственной ориентации птицы вычленяют только некоторые качества предмета. При этом, пространство, в котором располагаются эти ориентиры, анализируется ими также не безгранично. Отдельные ориентиры воспринимаются на больших дистанциях и имеют максимальную дальнобойность, как например звук. Другие действуют в непосредственной близости, при контакте — как осязательные тельца клюва. Действие запаха падали для парящих в воздухе грифов ограничивается узкой струйкой поднимающегося воздуха. Все органы чувств, следовательно, имеют свои пространственно ограниченные сферы действия, в пределах которых и осуществляется анализ предметов, ориентиров.
Сферы действия органов чувств имеют свою биологическую оправданную направленность. В тех случаях, когда речь идет об особенно ответственных ситуациях в жизни вида, например о ловле добычи или уклонении от опасности, одного органа чувств, к примеру зрения, слуха или обоняния, бывает недостаточно, поэтому, несколько органов чувств действуют вместе. Происходит наслаивание сфер их действия, и оказавшийся в их пределах предмет анализируется, и будет воспринят более всесторонне и точно.
Так, у сов и луней, существование которых зависит от того, как точно они определят месторасположение мыши, а действие часто происходит в густых зарослях или при ограниченной видимости поля зрения и слуха, имеется общая передняя направленность, образующаяся в результате переднего смещения глаз и ушей — такое лицо представляет собой очень характерный признак для сов и для луней.
Это дублирование органов чувств друг другом и обеспечивает цельное восприятие среды, природных ориентиров. Конечно, эту цельность обеспечивают уже не только органы чувств, но и главным образом мозг, который и объединяет информацию, поступающую по отдельным каналам, и оценивает ситуацию в целом. С работой мозга связаны, прежде всего, высшие формы ориентации, так называемый хоминг, возврат к месту гнездования искусственно удаленных птиц, ориентация при сезонных перелетах, прогнозирование погоды, счет и т.д.
Способности мозга птиц к рассудочной деятельности
Открытый подвижный образ жизни, постоянное чередование различных ориентиров, необходимость общения развили у птиц зачатки рассудочной деятельности и способность к элементарным абстракциям. Если вы подкрадываетесь к кормящимся в поле воронам и при этом для маскировки спуститесь в овражек, то птицы будут ждать вас у другого конца овражка, там, где вы должны будете очутиться, сохраняя первоначальное направление движения. Точно так же поступит гусиная стая или журавли, наблюдающие за подкрадывающейся к ним лисицы.
Однако, оценка, направленная на движение ориентира, отчасти экстраполяция его не менее важна в сложных формах ориентации нежели способность к количественной оценке ориентирования. В опытах удавалось научить кур клевать любое зерно по выбору – второе, третье и т.д., а вот голубей удалось научить различать различные комбинации зерен. Сороки и вороны также хорошо различают разные наборы предметов, и даже число людей и животных. Птицы, к примеру, без счета могут отличать 5 предметов от 6 – задача не всегда доступная даже для человека. Специальные опыты показали также, что птицы хорошо различают контуры и форму предметов, геометрических фигур и.т.д.
Эти способности играют особенно большую роль при астронавигации птиц – использовании в качестве ориентиров небесных тел.
Так, славок помещали в планетарий и следили за направлением их полета при различном положении звездного неба. Удалось доказать, что общая картина звездного неба может использоваться ими как ориентир при сезонных перелетах. Нетрудно представить себе те сложности, которые при этом возникают перед птицей – необходимость экстраполировать движение звезд, точно, до 15-20-ти минут чувствовать время, воспринимать различные комбинации созвездий, число звезд и.т.д.
Лучше всего, если мы сразу признаемся, что не знаем точного ответа. Разумеется, кое-что нам все же известно, но наша теория не всегда выдерживает проверку.
Способность перелетных птиц к ориентации поразительна. Вдумайтесь сами: ласточка по одним лишь ей ведомым приметам прилетает в Африку! Но самое удивительное заключается в том, что живущая в наших краях ласточка (а это убедительно доказало кольцевание птиц) возвращается из Африки домой. Не только в Венгрию, но даже в ту самую деревню, откуда она пустилась в дальний путь, к тому самому дому, под крышей которого она свила гнездо. Можно сказать, что все эти чудеса объясняются работой некоего таинственного внутреннего механизма. Мы называем механизм ориентации таинственным, потому что еще не сумели раскрыть его тайну.
Самая распространенная теория ориентации состояла в том, что птицы обучают маршрутам перелетов себе подобных. Маршрут передается из поколения в поколение: старшие летят во главе стаи, младшие следуют за ними и со временем сами обретают способность находить дорогу домой или к местам зимовки. В основном это верно: тому есть примеры. Но начнем с "контрдовода"- с кукушки. Всем известно, что кукушка не знает своих истинных родителей: взрослая кукушка откладывает яйцо в чужое гнездо, и выращиванием птенца занимаются птицы других видов. Осенью кукушки улетают в Африку или в тропические леса Южной Азии. Но удивительнее всего, что потомство пускается в путь позже, когда кукушки старшего поколения находятся уже в пути. Они летят без вожаков, и никогда не ошибаются в выборе маршрута. Их ведет врожденный инстинкт.
Как выбирают маршрут перелета аисты? Следуют за старшими или руководствуются врожденным инстинктом? Выяснением этого вопроса занимался немецкий орнитолог Шюц. Он поставил весьма остроумные эксперименты. Аист-птица крупная, и сравнительно легко удалось установить, что западноевропейские аисты совершают перелеты по одним, а восточноевропейские - по другим маршрутам. Аисты летают планируя, они любят восходящие воздушные потоки и поэтому не срезают путь, прокладывая маршрут напрямик через море, а стремятся пересечь его в узких местах. Европейские аисты стремятся попасть кратчайшим путем в Африку. Восточноевропейские аисты летят через Босфор, а западноевропейские пересекают море у Гибралтара. Требовалось выяснить, обучаются ли аисты навигационному искусству у старших или же маршрут им подсказывает врожденный инстинкт.
Для своего первого опыта Шюц взял восточноевропейских аистов. Из гнезд он выбрал по птенцу и выкормил их сам. На волю Шюц выпустил птенцов лишь после того, как старшие аисты улетели. Молодым аистам не оставалось ничего другого, как проложить маршрут самим, без опытного вожака, и они успешно справились с задачей, избрав тот же маршрут в Африку, что и их родители. Несколько аистов было поймано в Греции: очевидно, они не сумели найти кратчайший путь через море в районе Босфора. Но направление полета в основном было выбрано верно. Значит, аистов вел врожденный инстинкт.
Затем Шюц поставил новый опыт. На этот раз он взял 754 птенца восточноевропейского аиста, отвез их на запад и предоставил выкармливать местным аистам. Сообщения удалось получить почти о 100 окольцованных птенцах: вместе со старшими они проследовали через Средиземное море по западному маршруту - у Гибралтара. Влияние старших на выбор направления оказалось сильнее, чем врожденный инстинкт.
После этого Шюц поставил еще более интересный опыт. Он увез на запад птенцов восточноевропейского аиста и там выкормил их. На волю Шюц выпустил птенцов, когда местные аисты старшего поколения уже улетели. Молодые аисты отправились было сначала в юго-западном направлении, затем повернули на юго-восток, т. е. полетели по традиционному маршруту своих предков. Из опытов Шюца следовало, что аистам подсказывает маршрут перелета врожденный инстинкт, руководствуясь которым, летали их родители. Если же поблизости оказывались аисты старшего поколения, то маршрут выбирался под влиянием вожака стаи, а им был аист старшего поколения. Следовательно, влияние старших подавляло выбор маршрута, диктуемый врожденным инстинктом.
До сих пор мы говорили о том, что перелетные птицы умеют ориентироваться, т. е. так или иначе находить дорогу к местам зимовки, а затем обратную дорогу домой. Как они ориентируются? Мы видели, что известную роль играет обучение, но не все здесь до конца ясно.
Императорские пингвины (Aptenodytes)
Есть основания полагать, что птицы ориентируются так же, как моряки. Что необходимо капитану парусного судна для того, чтобы в открытом море проложить правильный курс и прийти в порт назначения? Прежде всего для этого необходим высокоточный прибор, известный под названием секстанта и позволяющий измерять высоту солнца над горизонтом. Однако одного лишь секстанта недостаточно, так как высота солнца зависит от времени года. Необходимы специальные таблицы. Еще капитану понадобятся точные часы - хронометр: положение солнца на небосводе непрестанно изменяется с утра и до вечера. Разумеется, ни один капитан судна не обрадуется столь скудному выбору навигационных средств, но любой судоводитель в случае необходимости смог бы проложить курс с их помощью.
Выяснилось, что перелетные птицы днем ориентируются по высоте солнца, т. е. пользуются своими естественными "навигационными приборами". Разумеется, никаких "биологических секстантов" и "биологических хронометров" у птиц нет. Это доказал своими опытами в первую очередь Крамер.
Он посадил скворцов в сферическую камеру, опирающуюся на кольцеобразную подставку. Камеру можно было по желанию затемнять и освещать. Если светило солнце, то скворцы ориентировались так же, как во время полета: они выдерживали направление движения или стремились вырваться на свободу в ту сторону, куда летели бы, не будь на их пути стенки. Но стоило затемнить камеру, как скворцы утрачивали способность ориентироваться и не могли выдержать направление движения.
Затем Крамер раздвинул шторки. Скворцы могли снова видеть солнце сквозь стеклянные окошки, на этот раз заклеенные папиросной бумагой. Свет был таким, как в тумане. Но это не мешало ориентироваться скворцам, они точно "знали" свой маршрут и бились о стенку камеры, стремясь продолжить полет в правильном направлении.
В следующем опыте Крамер зашторил окошко, обращенное к солнцу, и одновременно с противоположной стороны поставил зеркало, отражавшее солнечные лучи. Скворцы изменили направление полета на противоположное: ведь теперь они ориентировались по зеркальному отражению солнца! Так было доказано, что солнце влияет на способность скворцов ориентироваться в пространстве и даже что скворцов можно обмануть.
Некоторые перелетные птицы "путешествуют" по ночам . Сразу же возникает мысль о том, что они ориентируются по звездам. Такое предположение менее вероятно, поскольку свет звезд не столь интенсивен, как солнечный. К тому же, чтобы ориентироваться по звездам, необходимо основательно знать небосвод, чтобы уметь распознавать отдельные звезды и созвездия, да и наблюдать приходится не один сильный источник света, а множество слабых.
Заслуга в решении этого вопроса принадлежит немецкому орнитологу Зауэру. Для своих опытов он выбрал славку - неприхотливую певчую птицу размером меньше воробья. Зауэр содержал славок в неволе в таких условиях, что они вообще не видели естественного света. С того момента, как они вылуплялись из яиц, птенцы славки жили только при искусственном освещении. Опыт Зауэра показал, что жившие в неволе птицы осенью и весной, когда их свободные родичи совершали свои сезонные перелеты, приходили в состояние сильного возбуждения. "Биологический календарь" как бы говорил им: настала пора пускаться в путь.
Затем Зауэр поместил славок в клетки, полностью закрытые со всех сторон стеклом. Птицы могли видеть звездное небо. Теперь осенью и зимой, т. е. во время перелетов, подопытные славки стремились вырваться из клеток на север в том направлении, в котором улетают славки на волю.
Результат, полученный Зауэром, был особенно убедительным, поскольку орнитолог экспериментировал со многими видами славок. Гаичка, садовая и полевая славки стремились лететь на юго-запад, а малая славка - на юго-восток. Именно в этих направлениях летят осенью соответствующие виды, отправляясь на зимовку в Африку. Опыт Зауэра показал, что птицы ориентируются по звездному небу.
Затем экспериментатор перенес птиц в планетарий, где специальный аппарат проектирует на огромный яйцевидный купол светлые пятнышки, яркость, размеры и положение которых в точности соответствуют звездам и созвездиям на небосводе. (Зауэр поместил в планетарий стеклянные клетки с птицами.)
Первый из таких опытов проводился осенью. Сначала птицам показали "правильное" ночное небо - такое, какое они увидели бы, находясь на воле, и малая славка настойчиво стремилась вырваться из клетки в том направлении, в каком улетают на зимовье славки на воле. Но вдруг картина ночного неба изменилась: опыт производился в планетарии, и стоящий в центре зрительного зала специальный проекционный аппарат (планетарий) позволял с легкостью воспроизводить на своде ночное небо, видимое в любом месте на земле в любое время года. Теперь птицы видели звездное небо таким, как если бы находились не во Фрейбурге (где производились опыты), а в районе озера Балхаш. (За один час Земля поворачивается вокруг своей оси на 15° географической долготы, а наблюдателю, находящемуся на Земле, кажется, что небосвод поворачивается с такой же скоростью, но в противоположном направлении.)