Первым предшественником современных паровых турбин может считаться игрушечный двигатель, который изобрёл ещё во 2 в. до. н.э. александрийский учёный Герон. Первым предшественником современных паровых турбин может считаться игрушечный двигатель, который изобрёл ещё во 2 в. до. н.э. александрийский учёный Герон.


В 1629 г. итальянец Бранка создал проект колеса с лопатками. Оно должно было вращаться, если струя пара с силой ударяется по лопаткам колеса. Это был первый проект паровой турбины, которая в последствии получила название активной турбины. В 1629 г. итальянец Бранка создал проект колеса с лопатками. Оно должно было вращаться, если струя пара с силой ударяется по лопаткам колеса. Это был первый проект паровой турбины, которая в последствии получила название активной турбины. Паровой поток в этих ранних паровых турбинах был не концентрированным, и большая часть его энергии рассеивалась во всех направлениях, что приводило к значительным потерям энергии. Паровой поток в этих ранних паровых турбинах был не концентрированным, и большая часть его энергии рассеивалась во всех направлениях, что приводило к значительным потерям энергии.


Паровая турбина представляет собой серию вращающихся дисков, закрепленных на единой оси, называемых ротором турбины, и серию чередующихся с ними неподвижных дисков, закрепленных на основании, называемых статором. Диски ротора имеют лопатки на внешней стороне, пар подается на эти лопатки и крутит диски. Диски статора имеют аналогичные лопатки, установленные под противоположным углом, которые служат для перенаправления потока пара на следующие за ними диски ротора. Паровая турбина представляет собой серию вращающихся дисков, закрепленных на единой оси, называемых ротором турбины, и серию чередующихся с ними неподвижных дисков, закрепленных на основании, называемых статором. Диски ротора имеют лопатки на внешней стороне, пар подается на эти лопатки и крутит диски. Диски статора имеют аналогичные лопатки, установленные под противоположным углом, которые служат для перенаправления потока пара на следующие за ними диски ротора.


Разновидности паровых машин. Паровые турбины, формально являющиеся разновидностью паровых машин, до сих пор широко используются в качестве приводов генераторов электроэнергии. Примерно 86% электроэнергии, производимой в мире, вырабатывается с использованием паровых турбин. Паровые турбины, формально являющиеся разновидностью паровых машин, до сих пор широко используются в качестве приводов генераторов электроэнергии. Примерно 86% электроэнергии, производимой в мире, вырабатывается с использованием паровых турбин.


Энергию, скрытую в органическом топливе-угле, нефти или природном газе, невозможно сразу получить в виде электричества. Топливо сначала сжигают. Выделяющаяся энергия сначала нагревает воду, превращает ее в пар. Пар вращает турбину, а та в свою очередь электрический генератор, который вырабатывает ток. Энергию, скрытую в органическом топливе-угле, нефти или природном газе, невозможно сразу получить в виде электричества. Топливо сначала сжигают. Выделяющаяся энергия сначала нагревает воду, превращает ее в пар. Пар вращает турбину, а та в свою очередь электрический генератор, который вырабатывает ток.


Cудовые паровые турбины В нашей стране строят паровые турбины мощностью от нескольких киловатт до к Вт. Применяют турбины на тепловых электростанциях и на кораблях. Постепенно находят все более широкое применение газовые турбины, в которых вместо пара используют продукты сгорания газа. В нашей стране строят паровые турбины мощностью от нескольких киловатт до к Вт. Применяют турбины на тепловых электростанциях и на кораблях. Постепенно находят все более широкое применение газовые турбины, в которых вместо пара используют продукты сгорания газа.

История создания

турбин


Турбиной называют вращающееся устройство, которое приводится в действие потоком жидкости или газа.

Самый простой пример турбины – водяное колесо.

Представим себе вертикально поставленное колесо, на ободе которого закреплены черпаки или лопасти. На эти лопасти сверху льётся поток воды. Под действием воды колесо вращается. А вращением колеса можно приводить в действие другие механизмы. Так, в водяной мельнице колесо вращало жернова. А они мололи муку.




  • Эолипил Герона

Во времена Герона к его изобретению отнеслись, как к игрушке. Практического применения оно не нашло.

В 1629 г. итальянский инженер и архитектор Джованни Бранки создал паровую турбину, в которой колесо с лопатками приводилось в движение струёй пара.

Английский инженер Ричард Трейсвик в 1815 г. на ободе паровозного колеса установил два сопла и пустил по ним пар.

С 1864 г. по 1884 г. инженерами были запатентованы сотни изобретений, относящихся к турбинам.



Газовая турбина отличается от паровой тем, что в движение её приводит не пар из котла, а газ, который образуется при сгорании топлива. А все основные принципы устройства паровых и газовых турбин одинаковы.

Первый патент на газовую турбину был получен в 1791 г. англичанином Джоном Барбером. Барбер разработал свою турбину для движения безлошадной повозки. А элементы турбины Барбера присутствуют в современных газовых турбинах. В 1913 г. инженер, физик и изобретатель Никола Тесла запатентовал турбину, устройство которой принципиально отличалось от устройства традиционной турбины. В турбине Тесла не было лопастей, которые приводились в движение энергией пара или газа.




Вот и всё

Предмет Физика

Класс 8 а класс

Урок по теме «Паровая турбина. Газовая турбина. КПД теплового двигателя. Экологические проблемы использования тепловых машин.

Базовый учебник А.В. Перышкин Физика 8; М.: Дрофа

Цель урока:

Обучающие

обеспечить в ходе урока изучение устройства, принципа действия паровой и реактивной турбины;

сформировать у учащихся понятия КПД теплового двигателя и рассмотреть пути его повышения;

раскрыть роль и значение ТД в современной цивилизации

содействовать умению проводить сравнение КПД реального и идеального теплового двигателя;

показать положительную и отрицательную роль тепловых двигателей в жизни человека.

Развивающие

продолжить развитие умения анализировать, выделять главное в изучаемом материале, сравнивать, систематизировать и делать выводы;

развитие кругозора учащихся и получению ими новых естественнонаучных знаний

Воспитательные

продолжить формирование научного мировоззрения и показать, что в основе познания лежать факты, полученные из опыта, показать бесконечность процесса познания;

Тип урока: Комбинированный

Формы работы учащихся: индивидуальная и коллективная, наблюдения.

Необходимое техническое оборудование: компьютер, проектор

Структура и ход урока

1. Организационный этап.

* проверка наличия учащихся в классе;

* напоминание ТБ работы в кабинете;

* доброжелательный настрой учителя и учащихся;

* организация внимания всех учащихся;

* сообщение темы и задач урока.

2. Этап актуализации опорных знаний:

Фронтальная беседа по вопросам:

1) Какой двигатель называется двигателем внутреннего сгорания?

2) Из каких основных частей состоит простейший двигатель внутреннего сгорания?

3) Какие физические явления происходят при сгорании горючей смеси в двигателе внутреннего сгорания?

3. Этап изучения нового материала.

1. Постановка цели урока.

2. Изучение понятий «паровая турбина» «газовая турбина», «КПД теплового двигателя», влияние тепловых двигателей на окружающую среду

ПАРОВАЯ ТУРБИНА

«На предыдущих уроках мы познакомились с двигателем внутреннего сгорания. Сегодня познакомимся еще с одним видом двигателя, в котором пар или газ, нагретый до высокой температуры вращает вал двигателя без помощи поршня, шатуна и коленчатого вала»
(смотрим слайд 4 «Модель паровой турбины»)

Комментарии к демонстрации:

пар создавая давление на лопасти турбины заставляет ее вращаться вместе с валом, на котором она расположена и поднимать грузик, закрепленный на нити

(смотрим слайд 5 «Паровая турбина»)

Практическое использование этот процесс получил широкое применение в энергетической отрасли

(смотрим слайд 6 «Работа тепловой электростанции») .

Комментарии к слайду.

Принцип действия ТЭЦ:

Турбина — генератор — электрический ток

другие применения паровых турбин:

ГАЗОВАЯ ТУРБИНА

Пример двигателя, в котором газ нагретый до высокой температуры вращает вал двигателя (смотрим слайд 7 «Реактивный двигатель») :

Комментарии:

При работе турбины ротор компрессора вращается и засасывает воздух через входное сопло . Воздух, пройдя через ряд лопастей компрессора, сжимается, его давление и температура повышаются. Сжатый воздух поступает в камеры сгорания . Одновременно через форсунку в нее впрыскивается под большим давлением жидкое топливо (керосин, мазут). При горении топлива воздух нагревается до 1500-2200 0 С. Воздух расширяется и скорость его движения увеличивается. Движущиеся с большой скоростью воздух и продукты горения направляются в газовую турбину . Переходя от ступени к ступени они отдают свою кинетическую энергию лопаткам ротора турбины, при этом их температура уменьшается до 550 0 С. Часть полученной турбиной энергии расходуется на вращение компрессора, а остальная используется, например, для вращения винта самолета или ротора электрического генератора. Отработавший воздух вместе с продуктами сгорания при давлении, близком к атмосферному, и со скоростью более 500 м/с выбрасываются через выходное сопло в атмосферу.

Применение в авиации, энергетике и др.

КПД ТЕПЛОВОГО ДВИГАТЕЛЯ:

Смотрим слайд 8 «КПД тепловых двигателей»

определение КПДСмотрим слайд 9 «Значения КПД различных тепловых двигателей» -

проговариваем типы двигателей и КПД двигателей

ЭКОЛОГИЧЕСКИЕ ПРОБЛЕМЫ ИСПОЛЬЗОВАНИЯ ТЕПЛОВЫХ МАШИН

способы уменьшения вредного воздействия на окружающую среду:

смотрим интерактивную лекцию «Экологические проблемы использования тепловых машин»

Смотрим слайд 10 «Это интересно...»

Интересный факт!

Сжигание топлива сопровождается выделением в атмосферу углекислого газа. В атмосфере Земли в настоящее время содержится около 2600 млрд. т углекислого газа (около 0,0033 %). До периода бурного развития энергетики и транспорта количество углекислого газа, поглощаемого при фотосинтезе растениями и растворяемого в океане, было равно количеству газа, выделяемого при дыхании и гниении. В последние десятилетия этот баланс все в большей степени стал нарушаться. В настоящее время за счет сжигания угля, нефти и газа в атмосферу Земли ежегодно поступает дополнительно около 20 млрд. т углекислого газа.

Смотрим слайд 11 «Экологические проблемы»

Слайд 2

Парова́я турби́на (фр. turbine от лат. turbo вихрь, вращение) - это тепловой двигатель непрерывного действия, в лопаточном аппарате которого потенциальная энергия сжатого и нагретого водяного пара преобразуется в кинетическую, которая в свою очередь совершает механическую работу на валу.

Слайд 3

Турбина состоит из трех цилиндров (ЦВД, ЦСД и ЦНД), нижние половины корпусов которых обозначены соответственно 39, 24 и18. Каждый из цилиндров состоит из статора, главным элементом которого являются неподвижный корпус, и вращающегося ротора. Отдельные роторы цилиндров (ротор ЦВД 47, ротор ЦСД 5 и ротор ЦНД 11) жестко соединяются муфтами 31 и 21. К полумуфте 12 присоединяется полумуфта ротора электрогенератора, а к нему - ротор возбудителя. Цепочка из собранных отдельных роторов цилиндров, генератора и возбудителя называется валопроводом. Его длина при большом числе цилиндров (а самое большое их число в современных турбинах - 5) может достигать 80 м. Устройство двигателя

Слайд 4

Принцип работы

Паровые турбины работают следующим образом: пар, образующийся в паровом котле, под высоким давлением, поступает на лопатки турбины. Турбина совершает обороты и вырабатывает механическую энергию, используемую генератором. Генератор производит электричество. Электрическая мощность паровых турбин зависит от перепада давления пара на входе и выходе установки. Мощность паровых турбин единичной установки достигает 1000 МВт. В зависимости от характера теплового процесса паровые турбины подразделяются на три группы: конденсационные, теплофикационные и турбины специального назначения. По типу ступеней турбин они классифицируются как активные и реактивные.

Слайд 5

Слайд 6

Паровые турбины - преимущества

работа паровых турбин возможна на различных видах топлива: газообразное, жидкое, твердое высокая единичная мощность свободный выбор теплоносителя широкий диапазон мощностей внушительный ресурс паровых турбин

Слайд 7

Паровые турбины - недостатки

высокая инерционность паровых установок (долгое время пуска и останова) дороговизна паровых турбин низкий объем производимого электричества, в соотношении с объемом тепловой энергии дорогостоящий ремонт паровых турбин снижение экологических показателей, в случае использования тяжелых мазутов и твердого топлива

Слайд 8

Применение:

Реактивная паровая турбина Парсонса некоторое время применялась в основном на военных кораблях, но постепенно уступила место более компактным комбинированным активно-реактивным паровым турбинам, у которых реактивная часть высокого давления заменена одновенчатым или двухвенчатым активным диском. В результате уменьшились потери на утечки пара через зазоры в лопаточном аппарате, турбина стала проще и экономичнее. В зависимости от характера теплового процесса паровые турбины обычно подразделяют на 3 основные группы: конденсационные, теплофикационные и специального назначения.

Слайд 9

Основные преимущества ПТМ:

Широкий диапазон мощностей; Повышенный (в 1,2- 1,3 раза) внутренний КПД (~75%); Значительно уменьшенная длина установки (до 3 раз); Малые капитальные затраты на монтаж и ввод в эксплуатацию; Отсутствие системы маслоснабжения, что обеспечивает пожаробезопасность и допускает эксплуатацию в помещении котельной; Отсутствие редуктора между турбиной и приводимым механизмом, что повышает надежность работы и снижает уровень шума; Плавное регулирование скорости вращения вала от холостого хода до нагрузки турбоустановки; Малый уровень шума (до 70 дБА); Малая удельная масса (до 6 кг/кВт установленной мощности) Высокий ресурс. Время работы турбины до вывода из эксплуатации не менее 40 лет. При сезонном использовании турбоустановки срок окупаемости не превышает 3 лет.

  • Подготовил Андреев Дмитрий,
  • студент 190 ТМ группы.
  • Руководитель Л.А. Плещёва,
  • преподаватель
  • Шадринск 2015
тепловой двигатель внешнего сгорания, преобразующий энергию нагретого пара в механическую работу возвратно-поступательного движения поршня, а затем во вращательное движение вала. В более широком смысле паровая машина - любой двигатель внешнего сгорания, который преобразовывает энергию пара в механическую работу.
  • тепловой двигатель внешнего сгорания, преобразующий энергию нагретого пара в механическую работу возвратно-поступательного движения поршня, а затем во вращательное движение вала. В более широком смысле паровая машина - любой двигатель внешнего сгорания, который преобразовывает энергию пара в механическую работу.
Девятнадцатый век не зря называли веком пара. С изобретением паровой машины произошел настоящий переворот в промышленности, энергетике, транспорте. Появилась возможность механизировать работы, ранее требовавшие слишком много человеческих рук. Расширение объемов промышленного производства поставило перед энергетикой задачу всемерного повышения мощности двигателей. Однако первоначально вовсе не высокая мощность вызвала к жизни паровую турбину... Гидравлическая турбина как устройство для преобразования потенциальной энергии воды в кинетическую энергию вращающегося вала известна с глубокой древности. У паровой турбины история столь же долгая, ведь одна из первых конструкций известна под наименованием "турбины Герона" и датируется первым столетием до нашей эры. Однако сразу заметим - вплоть до XIX века турбины, приводимые в движение паром, являлись скорее техническими курьезами, игрушками, чем реальными промышленно применимыми устройствами.
  • Гидравлическая турбина как устройство для преобразования потенциальной энергии воды в кинетическую энергию вращающегося вала известна с глубокой древности. У паровой турбины история столь же долгая, ведь одна из первых конструкций известна под наименованием "турбины Герона" и датируется первым столетием до нашей эры. Однако сразу заметим - вплоть до XIX века турбины, приводимые в движение паром, являлись скорее техническими курьезами, игрушками, чем реальными промышленно применимыми устройствами.
И только с началом индустриальной революции в Европе, после широкого практического внедрения паровой машины Д. Уатта, изобретатели стали присматриваться к паровой турбине, так сказать, "вплотную". Создание паровой турбины требовало глубокого знания физических свойств пара и законов его истечения. Изготовление ее стало возможным только при достаточно высоком уровне технологии работы с металлами, поскольку потребная точность изготовления отдельных частей и прочность элементов были существенно более высокими, чем в случае паровой машины. Однако время шло, техника совершенствовалась, и час практического применения паровой турбины пробил. Впервые примитивные паровые турбины были использованы на лесопилках в восточной части США в 1883-1885 гг. для привода дисковых пил.
  • Паровая турбина Лаваля представляет собой колесо с лопатками. Струя пара, образующегося в котле, вырывается из трубы (сопла), давит на лопасти и раскручивает колесо. Экспериментируя с разными трубками для подачи пара, конструктор пришёл к выводу, что они должны иметь форму конуса. Так появилось применяемое до настоящего времени сопло Лаваля (патент 1889 г.). Это важное открытие изобретатель сделал, скорее, интуитивно; понадобилось ещё несколько десятков лет, чтобы теоретики доказали, что сопло именно такой формы даёт наилучший эффект.
  • Заниматься турбинами начал в 1881 г., а уже спустя три года ему выдали патент на собственную конструкцию: Парсонс соединил паровую турбину с генератором электрической энергии. С помощью турбины стало возможно вырабатывать электричество, и это сразу повысило интерес общества к паровым турбинам. В результате 15-летних изысканий Парсонс создал наиболее совершенную по тем временам реактивную многоступенчатую турбину. Он сделал несколько изобретений, повысивших экономичность этого устройства (доработал конструкцию уплотнений, способы крепления лопаток в колесе, систему регулирования числа оборотов).
  • Создал комплексную теорию турбомашин. Он разработал оригинальную многоступенчатую турбину, которая с успехом демонстрировалась на Всемирной выставке, проходившей в столице Франции в 1900 г. Для каждой ступени турбины Рато рассчитал оптимальное падение давления, что обеспечило высокий общий коэффициент полезного действия машины.
В его машине скорость вращения турбины была ниже, а энергия пара использовалась полнее. Поэтому турбины Кертиса отличались меньшими размерами и более надёжной конструкцией. Одна из главных областей применения паровых турбин - двигательные установки кораблей. Первое судно с паротурбинным двигателем - «Турбиния», - построенное Парсонсом в 1894 г., развивало скорость до 32 узлов (около 59 км/ч).
  • В его машине скорость вращения турбины была ниже, а энергия пара использовалась полнее. Поэтому турбины Кертиса отличались меньшими размерами и более надёжной конструкцией. Одна из главных областей применения паровых турбин - двигательные установки кораблей. Первое судно с паротурбинным двигателем - «Турбиния», - построенное Парсонсом в 1894 г., развивало скорость до 32 узлов (около 59 км/ч).
Американский паровик Doble выпускался в крайне ограниченных количествах: с 1923 по 1932 годы было изготовлено всего 42 экземпляра. Образец на иллюстрации датирован 1929 годом. Паромобили марки Brooks покидают конвейер фабрики в Стратфорде, Онтарио, 1926 год. ПАРОВАЯ ТУРБИНА Паровая турбина пара водяного в механическую работу.
  • Паровая турбина первичный паровой двигатель с вращательным движением рабочего органа - ротора и непрерывным рабочим процессом; служит для преобразования тепловой энергии пара водяного в механическую работу.
  • Схематический продольный разрез активной турбины с тремя ступенями давления: 1 - кольцевая камера свежего пара; 2 - сопла первой ступени; 3 - рабочие лопатки первой ступени; 4 - сопла второй ступени; 5 - рабочие лопатки второй ступени; 6 - сопла третьей ступени; 7 - рабочие лопатки третьей ступени.
  • Схематический разрез небольшой реактивной турбины: 1 - кольцевая камера свежего пара; 2 - разгрузочный поршень; 3 - соединительный паропровод; 4 - барабан ротора; 5, 8 - рабочие лопатки; 6, 9 - направляющие лопатки; 7 - корпус
  • Двухкорпусная паровая турбина (со снятыми крышками): 1 - корпус высокого давления; 2 - лабиринтовое уплотнение; 3 - колесо Кертиса; 4 - ротор высокого давления; 5 - соединительная муфта; 6 - ротор низкого давления; 7 - корпус низкого давления.
Источники:
  • Паровые машины [Электронный ресурс] - https://ru.wikipedia.org/wiki/%D0%9F%D0%B0%D1%80%D0%BE%D0%B2%D0%B0%D1%8F_%D0%BC%D0%B0%D1%88%D0%B8%D0%BD%D0%B0 (время обращения 02.09.2015)