Углеводородное топливо – это горючее вещество, состоящее из соединений углерода и водорода. К ним относятся жидкие нефтяные топлива (автотракторные, авиационные, котельные и другие…) и углеводородные горючие газы (метан, этан, бутан, пропан, их природные смеси и другие…). Чем выше содержание в углеводородном топливе водорода, тем больше его массовая теплота сгорания.
Углеводородное топливо представляет собой жидкость сложного состава, состоящую из большого количества индивидуальных углеводородов. Такая жидкость не имеет определенной температуры кипения, процесс кипения происходит в некотором интервале температур. Характерными точками фракционного состава обычно считают температуру начала кипения, температуру выкипания 10, 50, 90 % объема топлива и температуру конца кипения.
Источниками углеводородного топлива являются сырая нефть и природный газ.
Теплота сгорания углеводородных топлив зависит от химического состава и строения индивидуальных углеводородов, входящих в состав топлива, и для углеводородов различных групп находится в пределах 9500 - 10 500 ккал/кг(кДж/кг).
Метан
Простейший углеводород, бесцветный газ без запаха, химическая формула – СН 4 . Малорастворим в воде, легче воздуха. Метан нетоксичен и неопасен для здоровья человека. Накапливаясь в закрытом помещении, метан взрывоопасен. Взрывоопасен при концентрации в воздухе от 4,4 % до 17 %.Метан – наиболее термически устойчивый насыщенный углеводород. Его широко используют как бытовое и промышленное топливо и как сырьё для промышленности. Метан широко используется в качестве моторного топлива для автомобилей. Молярная масса =16,04г/моль. Температура плавления –182,49°С, кипения –161,58°С. Плотность =0,7168кг/м 3 .
Этан
С 2 Н 6 – органическое соединение, второй член гомологического ряда алканов. В природе содержится в составе природного газа, нефти и других углеводородах. По сравнению с метаном и пропаном более пожара - и взрывоопасен. Малотоксичен. Основное использование этана в промышленности – получение этилена. Этан при нормальных условиях – бесцветный газ, без запаха и вкуса. Молярная масса =30,07г/моль. Температура плавления −182,81 °C, кипения −88,63 °C. Плотность =1,342 кг/м 3 .
Пропан
С 3 Н 8 – органическое вещество класса алканов. Содержится в природном газе. Чистый пропан не имеет запаха, однако в технический газ могут добавляться компоненты, обладающие запахом (Бытовой газ). Как представитель углеводородных газов пожара - и взрывоопасен. Малотоксичен. Очень малорастворим в воде. Образует с воздухом взрывоопасные смеси при концентрации паров от 2,1% до 9,5 %. Температура кипения –42,1°С, плавления –187,6°С. Молярная масса =44,1г/моль. Плотность =2,019кг/м 3 . Пропан используется в промышленности для сварки, резки металла и в заготовительных работах; в быту для подогрева воды, приготовления пищи и обогрева помещений; в последнее время широко используется в качестве автомобильного топлива (дешевле и экологически безопаснее по сравнению с бензином).
Бутан
С 4 Н 10 – органическое соединение, углеводород класса алканов. Бутан – бесцветный горючий газ, со специфическим запахом. Легковоспламеним, пределы взрываемости 1,9 – 8,4 % в воздухе по объёму. Температура плавления –138,4°С, кипения –0,5°С. Молярная масса =58,12г/моль. Плотность =2,703кг/м 3 . Бутан, также как и пропан, используется в быту для обогрева помещений и приготовления пищи.
Пропан – бутан
Это смесь двух нефтяных углеводородных газов, пропана С 3 Н 8 и бутана С 4 Н 10 . Пропан – бутановая смесь в газообразном состоянии является бесцветной, не ядовитой, тяжелее воздуха, имеет резкий запах. Пропан – бутановые смеси широко используется в промышленности для сварки и резки. Также эта газовая смесь используется в качестве автомобильного топлива.
Авиационное топливо
Это горючее вещество, вводимое вместе с воздухом в камеру сгорания двигателя летательного аппарата для получения тепловой энергии в процессе сжигания. Делится на два типа – авиационные бензины и реактивное горючее. Авиационный бензин применяется, как правило, в поршневых двигателях, реактивное горючее в турбореактивных двигателях. Также известны разработки дизельных поршневых авиационных моторов, которые использовали дизельное топливо, а в настоящее время - керосин. Также необходимо отметить, что авиационные топлива применяются не только в авиационной технике. Основная область применения авиационных бензинов - топливо поршневых двигателей.
Котельное нефтяное топливо
Жидкое котельное топливо - топливо, применяемое в стационарных котельных установках, в промышленных печах различного назначения. В зависимости от вида сырья жидкие котельные топлива бывают: нефтяные, получаемые из нефтяных остатков, сланцевые и угольные. Большинство жидких котельных топлив составляют нефтяные фракции (углеводороды, содержащие от 5 до 10 атомов углерода в молекуле). Преимущество жидкого котельного топлива перед твердым определяется их высокой удельной теплотой сгорания, удобством транспортировки и хранения, простотой подачи в топку. Однако в экономически такое топливо уступает газообразному.
Таким образом, благодаря относительно низким затратам на производство и переработку этого топлива, оно получило широкое применение для производственных и хозяйственных нужд населения, поэтому область применения сжиженного углеводородного газа широка.
ВИДЫ ТОПЛИВА. КЛАССИФИКАЦИЯ ТОПЛИВА
По определению Д.И.Менделеева, «топливом называется горючее вещество, умышленно сжигаемое для получения теплоты».
В настоящее время термин «топливо» распространяется на все материалы, служащие источником энергии (например, ядерное топливо).
Топливо по происхождению делят на:
Природное топливо (уголь, торф, нефть, горючие сланцы, древесина и др.)
Искусственное топливо (моторное топливо, генераторный газ, кокс, брикеты и др.).
По своему агрегатному состоянию его делят на твёрдое, жидкое и газообразное топливо, а по своему назначению при использовании – на энергетическое, технологическое и бытовое. Наиболее высокие требования предъявляются к энергетическому топливу, а минимальные требования – к бытовому.
Твёрдое топливо – древесно-растительная масса, торф, сланцы, бурый уголь, каменный уголь.
Жидкое топливо – продукты переработки нефти (мазут).
Газообразное топливо – природный газ; газ, образующийся при переработке нефти, а также биогаз.
Ядерное топливо – расщепляющиеся (радиоактивные) вещества (уран, плутоний).
Органическое топливо, т.е. уголь, нефть, природный газ, составляет подавляющую часть всего энергопотребления. Образование органического топлива является результатом теплового, механического и биологического воздействия в течение многих столетий на останки растительного и животного мира, откладывающиеся во всех геологических формациях. Всё это топливо имеет углеродную основу, и энергия высвобождается из него, главным образом, в процессе образования диоксида углерода.
ТВЁРДОЕ ТОПЛИВО. ОСНОВНЫЕ ХАРАКТЕРИСТИКИ
Твёрдое топливо. Ископаемое твёрдое топливо (за исключением сланцев) является продуктом разложения органической массы растений. Самое молодое из них – торф – представляет собой плотную массу, образовавшуюся из перегнивших остатков болотных растений. Следующими по «возрасту» являются бурые угли – землистая или чёрная однородная масса, которая при длительном хранении на воздухе частично окисляется («выветривается») и рассыпается в порошок. Затем идут каменные угли, обладающие, как правило, повышенной прочностью и меньшей пористостью. Органическая масса наиболее старых из них – антрацитов – претерпела наибольшие изменения и на 93 % состоит из углерода. Антрацит отличается высокой твёрдостью.
Мировые геологические запасы угля, выраженные в условном топливе, оцениваются в 14000 млрд.тонн, из которых половина относится к достоверным (Азия – 63%, Америка – 27%). Наибольшими запасами угля располагают США и Россия. Значительные запасы имеются в ФРГ, Англии, Китае, на Украине и в Казахстане.
Всё количество угля можно представить в виде куба со стороной 21 км, из которого ежегодно изымается человеком «кубик» со стороной 1,8 км. При таких темпах потребления угля хватит примерно на 1000 лет. Но уголь – тяжёлое неудобное топливо, имеющее много минеральных примесей, что усложняет его использование. Запасы его распределены крайне неравномерно. Известнейшие месторождения угля: Донбасский (запасы угля 128 млрд.т.), Печорский (210 млрд.т.), Карагандинский (50 млрд.т.), Экибастузский (10 млрд.т.), Кузнецкий (600 млрд.т.), Канско-Ачинский (600 млрд.т.). Иркутский (70 млрд.т.) бассейны. Самые крупные в мире месторождения угля – Тунгусское (2300 млрд.т. – свыше 15% от мировых запасов) и Ленское (1800 млрд.т. – почти 13% от мировых запасов).
Добыча угля ведётся шахтным методом (глубиной от сотен метров до нескольких километров) или в виде открытых карьерных разработок. Уже на этапе добычи и транспортировки угля, применяя передовые технологии, можно добиться снижения потерь при транспортировке. Уменьшения зольности и влажности отгружаемого угля.
Возобновляемым твёрдым топливом является древесина. Доля её в энергобалансе мира сейчас чрезвычайно невелика, но в некоторых регионах древесина (а чаще её отходы) также используется в качестве топлива.
В качестве твёрдого топлива могут быть также использованы брикеты – механическая смесь угольной и торфяной мелочи со связующими веществами (битум и др.), спрессованная под давлением до 100 МПа в специальных прессах.
ЖИДКОЕ ТОПЛИВО. ОСНОВНЫЕ ХАРАКТЕРИСТИКИ
Жидкое топливо. Практически всё жидкое топливо пока получают путём переработки нефти. Нефть, жидкое горючее полезное ископаемое, представляет собой бурую жидкость, содержащую в растворе газообразные и легколетучие углеводороды. Она имеет своеобразный смоляной запах. При перегонке нефти получают ряд продуктов, имеющих важное техническое значение: бензин, керосин, смазочные масла, а также вазелин, применяемый в медицине и парфюмерии.
Сырую нефть нагревают до 300-370 °С, после чего полученные пары разгоняют на фракции, конденсирующиеся при различной температуре tª: сжиженный газ (выход около 1%), бензиновую (около 15%, tª=30 - 180°С). Керосиновую (около 17 %, tª=120 - 135°С), дизельную (около 18 %, tª=180 - 350°С). Жидкий остаток с температурой начала кипения 330-350°С называется мазутом. Мазут, как и моторное топливо, представляет собой сложную смесь углеводородов, в состав которых входят, в основном, углерод (84-86 %) и водород (10-12%).
Мазут, получаемый из нефти ряда месторождений, может содержать много серы (до 4.3%), что резко усложняет защиту оборудования и окружающей среды при его сжигании.
Зольность мазута не должна превышать 0,14 %, а содержание воды должно быть не более 1,5 %. В состав золы входят соединения ванадия, никеля, железа и других металлов, поэтому её часто используют в качестве сырья для получения, например, ванадия.
В котлах котельных и электростанций обычно сжигают мазут, в бытовых отопительных установках – печное бытовое топливо (смесь средних фракций).
Мировые геологические запасы нефти оцениваются в 200 млрд. т., из которых 53 млрд.т. составляют достоверные запасы. Более половины всех достоверных запасов нефти расположено в странах Среднего и Ближнего Востока. В странах Западной Европы, где имеются высокоразвитые производства, сосредоточены относительно небольшие запасы нефти. Разведанные запасы нефти всё время увеличиваются. Прирост происходит в основном за счёт морских шельфов. Поэтому все имеющиеся в литературе оценки запасов нефти являются условными и характеризуют только порядок величин.
Общие запасы нефти в мире ниже, чем угля. Но нефть более удобное для использования топливо. Особенно в переработанном виде. После подъёма через скважину нефть направляется потребителям в основном по нефтепроводам, железной дорогой или танкерами. Поэтому в себестоимости нефти существенную часть имеет транспортная составляющая.
ГАЗООБРАЗНОЕ ТОПЛИВО. ОСНОВНЫЕ ХАРАКТЕРИСТИКИ
Газообразное топливо. К газообразному топливу относится, прежде всего, природный газ. Это газ, добываемый из чисто газовых месторождений, попутный газ нефтяных месторождений, газ конденсатных месторождений, шахтный метан и т.д. Основным его компонентом является метан СН4; кроме того, в газе разных месторождений содержатся небольшие количества азота N2, высших углеводородов СnНm, диоксида углерода СО2. В процессе добычи природного газа его очищают от сернистых соединений, но часть их (в основном сероводород) может оставаться.
При добыче нефти выделяется так называемый попутный газ, содержащий меньше метана, чем природный, но больше высших углеводородов и поэтому выделяющий при сгорании больше теплоты.
В промышленности и особенно в быту находит широкое распространение сжиженный газ, получаемый при первичной обработке нефти и попутных нефтяных газов. Выпускают технический пропан (не менее 93% С3 Н8 + С3 Н6), технический бутан (не менее 93% С4 Н10 + С4 Н8) и их смеси.
Мировые геологические запасы газа оцениваются в 140-170 триллионов м³.
Природный газ располагается в залежах, представляющих собой «купола» из водонепроницаемого слоя (типа глины), под которым в пористой среде (песчаник) под давлением находится газ, состоящий в основном из метана СН4. На выходе из скважины газ очищается от песчаной взвеси, капель конденсата и других включений и подаётся на магистральный газопровод диаметром 0,5 – 1,5 м длиной несколько тысяч километров. Давление газа в газопроводе поддерживается на уровне 5 МПа при помощи компрессоров, установленных через каждые 100-150 м. Компрессоры вращаются газовыми турбинами, потребляющими газ. Общий расход газа на поддержание давления в газопроводе составляет 10-12% от всего прокачиваемого. Поэтому транспорт газообразного топлива весьма энергозатратен.
В последнее время в ряде мест всё большее применение находит биогаз – продукт анаэробной ферментации (сбраживания) органических отходов (навоза, растительных остатков, мусора, сточных вод и т.д.). В Китае на самых разных отбросах работают уже свыше миллиона фабрик биогаза (по данным ЮНЕСКО – до 7 млн.). В Японии источниками биогаза служат свалки предварительно отсортированного бытового мусора. «Фабрика», производительностью до 10-20 м³ газа в сутки. Обеспечивает топливом небольшую электростанцию мощностью 716 кВт.
Анаэробное сбраживание отходов крупных животноводческих комплексов позволяет решить чрезвычайно острую проблему загрязнения окружающей среды жидкими отходами путём превращения их в биогаз (примерно 1 куб.м в сутки на единицу крупного рогатого скота) и высококачественные удобрения.
Весьма перспективным видом топлива, обладающим в три раза большей удельной энергоёмкостью по сравнению с нефтью, является водород, научно-экспериментальные работы по изысканию экономичных способов промышленного преобразования которого активно ведутся в настоящее время как в нашей стране, так и за рубежом. Запасы водорода неистощимы и не связаны с каким-то регионом планеты. Водород в связанном состоянии содержится в молекулах воды (Н2 О). При его сжигании образуется вода, не загрязняющая окружающую среду. Водород удобно хранить, распределять по трубопроводам и транспортировать без больших затрат.
В настоящее время водород в основном получают из природного газа, в ближайшем будущем его можно будет получать в процессе газификации угля. Для получения химической энергии водорода используется также процесс электролиза. Последний способ имеет значительное преимущество, так как приводит к обогащению кислородом окружающей среды. Широкое применение водородного топлива может решить три актуальные проблемы:
Уменьшить потребление органического и ядерного топлива;
Удовлетворить возрастающие потребности в энергии;
Снизить загрязнение окружающей среды.
ЯДЕРНОЕ ТОПЛИВО. КЛАССИФИКАЦИЯ И ПРИМЕНЕНИЕ
Ядерное топливо. Единственный природный вид ядерного топлива – тяжёлые ядра урана и тория. Энергия в виде теплоты высвобождается под действием медленных нейтронов при делении изотопа 235 U, который составляет в природном уране 1/140 часть. В качестве сырья могут использоваться 238 U и 239 Th, которые при облучении нейтронами превращаются в новое ядерное топливо – соответственно 239 Pu и 239 U. При делении всех ядер, содержащихся в 1 кг урана, выделяется энергия 2·107 кВт·ч, что эквивалентно 2,5 тыс.т высококачественного каменного угля с теплотой сгорания 35 МДж/кг (8373 ккал/кг).
Ядерное топливо делится на два вида:
- Природное урановое, содержащее делящиеся ядра 235 U, а также сырьё 238 U, способное при захвате нейтрона образовывать плутоний 239 Pu;
- Вторичное топливо, которое не встречается в природе, в том числе 239 Pu, получаемый из топлива первого вида, а также изотопы 233 U, образующиеся при захвате нейтронов ядрами тория 232 Th.
По химическому составу, ядерное топливо может быть:
- Металлическим, включая сплавы;
- Оксидным (например, UO2);
- Карбидным (например, PuC1-x)
- Нитридным
- Смешанным (PuO2 + UO2)
Применение. Ядерное топливо используется в ядерных реакторах, где оно обычно располагается в герметично закрытых тепловыделяющих элементах (ТВЭЛах) в виде таблеток размером в несколько сантиметров.
К ядерному топливу применяются высокие требования по химической совместимости с оболочками ТВЭЛов, у него должна быть достаточная температура плавления и испарения, хорошая теплопроводность, небольшое увеличение объёма при нейтронном облучении, технологичность производства.
Металлический уран сравнительно редко используют как ядерное топливо. Его максимальная температура ограничена 660 °C. При этой температуре происходит фазовый переход, в котором изменяется кристаллическая структура урана. Фазовый переход сопровождается увеличением объёма урана, что может привести к разрушению оболочки ТВЭЛов. При длительном облучении в температурном интервале 200-500°С уран подвержен радиационному росту. Это явление заключается в том, что облучённый урановый стержень удлиняется. Экспериментально наблюдалось увеличение длины уранового стержня в полтора раза.
Использование металлического урана, особенно при температуре больше 500 °C, затруднено из-за его распухания. После деления ядра образуются два осколка деления, суммарный объём которых больше объёма атома урана (плутония). Часть атомов - осколков деления являются атомами газов (криптона, ксенона и др.). Атомы газов накапливаются в по́рах урана и создают внутреннее давление, которое увеличивается с повышением температуры. За счёт изменения объёма атомов в процессе деления и повышения внутреннего давления газов уран и другие ядерные топлива начинают распухать. Под распуханием понимают относительное изменение объёма ядерного топлива, связанное с делением ядер.
Распухание зависит от выгорания и температуры ТВЭЛов. Количество осколков деления возрастает с увеличением выгорания, а внутреннее давление газа - с увеличением выгорания и температуры. Распухание ядерного топлива может привести к разрушению оболочки ТВЭЛа. Ядерное топливо менее подвержено распуханию, если оно обладает высокими механическими свойствами. Металлический уран как раз не относится к таким материалам. Поэтому применение металлического урана в качестве ядерного топлива ограничивает выгорание, которое является одной из главных оценок экономики атомной энергетики.
Радиационная стойкость и механические свойства топлива улучшаются после легирования урана, в процессе которого в уран добавляют небольшое количество молибдена, алюминия и других металлов. Легирующие добавки снижают число нейтронов деления на один захват нейтрона ядерным топливом. Поэтому легирующие добавки к урану стремятся выбрать из материалов, слабо поглощающих нейтроны.
К хорошим ядерным топливам относятся некоторые тугоплавкие соединения урана: окислы, карбиды и интерметаллические соединения. Наиболее широкое применение получила керамика - двуокись урана UO2. Её температура плавления равна 2800 °C, плотность - 10,2 т/м3. У двуокиси урана нет фазовых переходов, она менее подвержена распуханию, чем сплавы урана. Это позволяет повысить выгорание до нескольких процентов. Двуокись урана не взаимодействует с цирконием, ниобием, нержавеющей сталью и другими материалами при высоких температурах. Основной недостаток керамики - низкая теплопроводность - 4,5 кДж/(м·К), которая ограничивает удельную мощность реактора по температуре плавления. Так, максимальная плотность теплового потока в реакторах ВВЭР на двуокиси урана не превышает 1,4·103 кВт/м2, при этом максимальная температура в стержневых ТВЭЛах достигает 2200 °C. Кроме того, горячая керамика очень хрупка и может растрескиваться.
Плутоний относится к низкоплавким металлам. Его температура плавления равна 640 °C. У плутония плохие пластические свойства, поэтому он почти не поддаётся механической обработке. Технология изготовления ТВЭЛов усложняется ещё токсичностью плутония. Для приготовления ядерного топлива обычно идут двуокись плутония, смесь карбидов плутония с карбидами урана, сплавы плутония с металлами.
Высокими теплопроводностью и механическими свойствами обладают дисперсионные топлива, в которых мелкие частицы UO2, UC, PuO2 и других соединений урана и плутония размещают гетерогенно в металлической матрице из алюминия, молибдена, нержавеющей стали и др. Материал матрицы и определяет радиационную стойкость и теплопроводность дисперсионного топлива. Например, дисперсионное топливо Первой АЭС состояло из частиц сплава урана с 9 % молибдена, залитых магнием.
УСЛОВНОЕ ТОПЛИВО
Условное топливо. Различные виды энергетических ресурсов обладают разным качеством, которое характеризуется энергоёмкостью топлива. Удельной энергоёмкостью называется количество энергии, приходящееся на единицу массы физического тела энергоресурса.
Для сопоставления различных видов топлива, суммарного учёта его запасов, оценки эффективности использования энергетических ресурсов, сравнения показателей теплоиспользующих устройств, принята единица измерения – условное топливо. Условное топливо – это такое топливо, при сгорании 1 кг которого выделяется 29309 кДж, или 700 ккал энергии. Для сравнительного анализа используется 1 тонна условного топлива.
1 ту.т = 29309 кДж = 7000 ккал = 8120 кВт·ч.
Этот показатель соответствует хорошему малозольному углю, который иногда называют угольным эквивалентом.
За рубежом для анализа используется условное топливо с теплотой сгорания 41900 кДж/кг (10000 ккал/кг). Этот показатель называется нефтяным эквивалентом. В нижеследующей таблице приведены значения удельной энергоёмкости для ряда энергетических ресурсов в сравнении с условным топливом.
ЗАКЛЮЧЕНИЕ
Таким образом, на основе вышеизложенного материала можно сделать следующие выводы:
Топливо – это горючее вещество, применяемое для получения теплоты.
По происхождению топливо бывает природное и искусственное.
По агрегатному состоянию выделяют твёрдое, жидкое и газообразное топливо.
По назначению при использовании топливо может быть энергетическим, технологическим и бытовым.
Как самостоятельный вид выделяют ещё ядерное топливо.
Для сравнения различных видов топлива по их теплотворной способности используют единицу измерения «условное топливо».
Условное топливо – условно принятое топливо с теплотворной способностью 7000 ккал/кг (для жидких и твёрдых видов топлива) и 7000 ккал/нм3 (для газообразных видов топлива).
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ
1. Охрана труда и основы энергосбережения: Учеб. пособие /
Э.М. Краченя, Р.Н. Козел, И.П.Свирид. – 2-е изд. – Мн.: ТетраСистемс, 2005. – 156-161,166-167 с.
2. Википедия – свободная энциклопедия [Электронный ресурс] / Ядерное топливо. Режим доступа: ru.wikipedia.org/ Дата доступа: 04.10.2009.
3. Департамент по энергоэффективности Государственного комитета по стандартизации Республики Беларусь [Электронный ресурс] / Нормативные документы. Методические рекомендации по составлению технико-экономических обоснований для энергосберегающих мероприятий. Режим доступа: energoeffekt.gov.by/doc/metodika_1.asp. Дата доступа: 03.10.2009
ПРИЛОЖЕНИЕ А
Таблица 1: Удельная энергоёмкость энергетических ресурсов
Топливо – горючие вещества, в основе состава которых лежит элемент углерод. Кроме углерода в топливе, как правило, присутствует водород, кислород, азот, сера и некоторые другие элементы. Топливо служит для получения тепловой энергии и как химическое сырье. В настоящее время за счет топлива получается около 90% энергии потребляемой человеком и более 80% различных химических продуктов, в том числе почти все синтетические материалы (пластмассы, каучук, волокна и т.д.).
Кроме углеродистых топлив в последнее время некоторое значение по объему потребления приобрело топливо термоядерное (тепло выделяется за счет синтеза ядер или распаде ядер тяжелых элементов).
Основным показателем достоинств любого топлива при его использовании является теплота сгорания (Q) (теплотворная способность), т.е. количество тепла, которое можно получить при сгорании единицы массы или объема топлива. Различают высшую теплоту сгорания (Qв), которая учитывает теплоту конденсации водяных и низшую теплоту сгорания (Qн), когда это тепло не учитывается.
Теплота сгорания измеряется в джоулях или калориях (1 Кал. = 4,19 Дж). Обычно теплота сгорания выражается в калориях или Джоулях на единицу топлива (удельная теплота сгорания). Для твердого или жидкого топлива единицей является килограмм (кДж/кг, ккал/кг), для газообразного – кубический метр: (кДж/м 3 , ккал/м 3).
Теплота сгорания определяется сжиганием навески топлива с кислородом в специальных приборах (калориметрическая бомба, проточный калориметр). Определенная таким образом теплота сгорания обозначается, как теплота сгорания в бомбе (Qб). Эта величина служит обычно для практической оценки топлива и с соответствующими поправками для всякого рода теплотехнических расчетов.
Все виды ископаемого топлива значительно разнятся друг от друга по теплоте сгорания, в то же время расчеты энергетических установок требуют применения единой системы оценки качества топлива с этой точки зрения.
Уже давно введена такая условная единица – так называемое условное топливо. Условное топливо (т.у.т.) определяет не теплоту сгорания 1 кг топлива, а количество топлива, способное дать при сгорании 7000 ккал. Введение такой единицы позволяет вести теплотехнические и технохимические расчеты и, прежде всего, составлять топливные балансы предприятий и районов на одной основе.
Общие запасы углеродного топлива на земле достаточны, чтобы обеспечить энергетику и химическое их использование в течение многих столетий развития человеческого общества.
Оценка запасов топлива может определяться в различных единицах, например, в тоннах, калориях, киловаттчасах. Определение в тоннах мало показательно из-за различия в качестве топлива, а в калориях из-за разных КПД топочных устройств.
Энергетическая ценность источников энергии определяется количеством энергии (в кВт-ч), которая может быть получена при сжигании 1 кг или 1 м 3 топлива. Энергетическая ценность некоторых видов топлива приведена ниже (для природного газа – в кВт-ч/м 3 , для остальных – в кВт-ч/кг):
Целесообразность применения некоторых источников энергии определяется не только их энергетической ценностью, но и запасами их в природе, географическим положением, доступностью и некоторыми другими факторами.
Следует иметь ввиду, что количественное выражение запасов топлива в виде возможной для получения энергии в кВт-ч или Джоулях не отражает полностью их истинную ценность, так как необходимо учитывать также ценность их как сырья для химических производств. В этом отношении нефть и газ в настоящее время значительно превосходят все другие виды топлива. Следует сказать также, что потенциально все топлива одинаково ценны.
Исключительно важным обстоятельством для оценки топлива является его агрегатное состояние. Топлива делятся на твердые, жидкие и газообразные. Твердые топлива – угли, горючие сланцы, торф, древесина исторически первыми выступили в человеческой практике. Появление двигателей внутреннего сгорания вызвало необходимость производства жидких или газообразных топлив. Решающее значение среди топлив стала играть нефть, а также природный газ.
Эти оба топлива, наряду с самой высокой теплотой сгорания, обладают также и другими преимуществами. Для их добычи нет необходимости строить шахты, специальные машины для их извлечения, дробления и обогащения. Дальний транспорт нефти и газа осуществляется по трубопроводам, что также в очень большой степени увеличивает экономическую эффективность их применения. В то же время возможность добычи и транспорта нефти и газа стало возможно только при наличии высокой техники бурения, мощных компрессоров и насосов, больших количеств высококачественных сталей и других условий, которые характерны для современного уровня развития промышленности. Экономические показатели добычи и применения нефти и газа значительно превосходят все другие виды топлива.
В настоящее время нефть и газ занимают ведущее положение в мировом топливно-энергетическом балансе.
Мировые достоверные запасы нефти оцениваются в 159 млрд. м 3 (136 млрд. т). При существующих объемах добычи нефти равных 3,9 млрд. м 3 (3,3 млрд.т) они будут исчерпаны за 41 год. Мировые запасы ископаемых углей оцениваются величиной более 1,12×1013 тонн. При существующих объемах добычи они будут исчерпаны через более чем полтора тысячелетия.
Суммарные разведанные запасы природного газа не Земле оцениваются в 150×1012 м 3 . Россия является крупнейшей мировой державой по запасам природного газа, которые составляют до 30% мировых разведанных запасов.
В народном хозяйстве РФ расход топлива распределяется следующим образом:
По отдельным отраслям потребление топлива составляет:
В так называемых огнетехнических цехах предприятий доля топлива составляет:
Контрольные вопросы к теме V
«Топливо и энергия в химической промышленности»
1. Какие виды энергии и с какой целью используются в химической промышленности?
2. Что такое энергоемкость химического производства и на какие классы она делится? Приведите примеры.
3. Перечислите основные источники энергии и классифицируйте их.
4. Чем характеризуемся энергетическая ценность химического топлива?
5. На чем основано использование водорода в энергетике?
6. В чем особенности и преимущества использования новых видов энергии в химическом производстве?
7. Перечислите основные пути рационального использования энергии в химической промышленности.
8. Что такое вторичные энергетические ресурсы (ВЭР)? Приведите пример.
9. Для каких целей используются в химической промышленности плазмохимические процессы?
Раздел 2. Технология органических и неорганических веществ
скачатьРеферат на тему:
Ископаемое топливо
План:
-
Введение
- 1 История
- 2 Извлекаемые запасы
- 3 Темпы потребления
- 4 Влияние на окружающую среду
Введение
Ископа́емое то́пливо - это нефть, уголь, горючий сланец, природный газ и его гидраты, торф и другие горючие минералы и вещества, добываемые под землёй или открытым способом. Уголь и торф - топливо, образующееся по мере накопления и разложения останков животных и растений. В отношении происхождения нефти и природного газа есть несколько противоречивых гипотез. Ископаемые виды топлива являются невозобновимым природным ресурсом, так как накапливались миллионы лет.
1. История
2. Извлекаемые запасы
3. Темпы потребления
За XVIII век количество добываемого угля увеличилось на 4000%, К 1900-му добывалось 700 миллионов тонн угля в год, затем наступил черёд нефти. Потребление нефти росло около 150 лет и в начале третьего тысячелетия выходит на плато. В настоящее время в мире добывается более 87 млн баррелей в день. (Около 5 млрд. тонн в год)
4. Влияние на окружающую среду
На долю предприятий топливно-энергетического комплекса России приходится половина выбросов вредных веществ в атмосферный воздух, более трети загрязнённых сточных вод, треть твёрдых отходов от всей национальной экономики. Особую актуальность приобретает планирование экологических мероприятий в районах пионерного освоения ресурсов нефти и газа.
Сжигание ископаемых видов топлива приводит к выбросам двуокиси углерода (CO 2) – парникового газа, который приносит наибольший вклад в глобальное потепление. Природный газ, основную часть которого составляет метан, также является парниковым газом. Парниковый эффект одной молекулы метана примерно в 20 раз сильнее, чем у молекулы CO 2 , поэтому с климатической точки зрения сжигание природного газа предпочтительней его попаданию в атмосферу.
скачатьДанный реферат составлен на основе статьи из русской Википедии . Синхронизация выполнена 10.07.11 13:32:37
Похожие рефераты:
Ученые ищут способы удалять избыточный углекислый газ (СО2) из атмосферы, поэтому множество экспериментов направлено на использование этого газа в создании топлива. И водород, и метанол использовали в экспериментах, но процессы были многоступенчатыми и требовали применения разнообразных методик. Теперь исследователи Техасского Университета (Арлингтон, ЮТА) продемонстрировали прямое, простое и недорогое преобразование СО2 и воды в жидкое топливо с помощью высокого давления, интенсивного излучения и сконцентрированного подогрева.
По словам исследователей из Техаса, это прорыв – получение технологии стабильного топлива с применением углекислого газа из атмосферы и преимуществом в виде производства кислорода как побочного продукта, что окажет еще более положительное воздействие на окружающую среду.
«Мы первые, кто использовал и свет, и тепло, чтобы синтезировать жидкие углеводороды в одноступенчатом процессе из СО2 и воды, - сказал Брайан Деннис, профессор UTA и научный coруководитель проекта. - Сосредоточенный свет стимулирует фотохимическую реакцию, которая генерирует высокоэнергетические промежуточные звенья и тепло, чтобы стимулировать термохимические реакции углеродного цепного формирования, таким образом производя углеводороды в одноступенчатом процессе».
Для инициации процесса фото- и термохимической реакции используется фотокатализатор из диоксида титана, который очень эффективен в UV-спектре, но неэффективен в видимом. Для повышения эффективности исследователи собираются создать фотохимический катализатор, лучше соответствующий солнечному спектру. Согласно исследованиям, команда предполагает, что кобальт, рутений или даже железо можно рассмотреть как хороших кандидатов на новый катализатор.
«У нашего процесса также есть важное преимущество перед альтернативными технологиями для транспортных средств, поскольку многие продукты углеводорода у нашей реакции те же, что используются в автомобилях, грузовиках и самолетах, таким образом, не будет необходимости менять существующую систему распределения топлива», - сказал Фредерик Макдоннелл, временный декан факультета химии и биохимии UTA и научный coруководитель проекта.
В будущем исследователи предполагают, что параболические зеркала могли также использоваться, чтобы сконцентрировать солнечный свет на катализаторе в реакторе, таким образом обеспечивая и необходимое нагревание, и фотоинициацию реакции без других источников внешнего питания. Команда также полагает, что любой избыток тепла, создаваемый в процессе, может быть также использован в других аспекты солнечного топливного средства, например, отделении и очистке воды.