Если ионная сила раствора невелика, то ионогенные ПАВ могут вести себя как полиэлектролиты, отталкиваясь друг от друга. При больших количествах соли силы отталкивания уменьшаются, и червеобразные мицеллы могут образовать сетку. Еще большее добавление соли может привести к образованию везикул. Область(II) – область сосуществования различных структур. Действие на растворы ионогенных ПАВ одноименно заряженных ионов невелико. На неионогенные поверхностно-активные вещества добавки соли влияют мало. В этом случае может наблюдаться снижение ККМ вследствие дегидратации ионов.


Добавки спиртов.
Длинноцепочечные спирты встраиваются в агрегаты и образуют смешанные мицеллы. В растворах, содержащих пропанол, ККМ резко снижается при увеличении концентрации спирта. При увеличении числа метиленовых групп в спирте это снижение проявляется в бoльшей степени. Влияние же более растворимых в воде спиртов практически не влияет на агрегацию растворов ПАВ, но при больших концентрациях может привести к увеличению ККМ из-за изменения свойств раствора. Важную роль при образовании смешанных мицелл играет стерический фактор.
Добавки других органических соединений.
Нерастворимые в воде углеводороды, такие как бензол или гептан, попадая в мицеллярный раствор, солюбилизируются в ядре мицеллы. При этом увеличивается объем мицелл, изменяются их размеры. Изменение кривизны поверхности мицеллы снижает электрический потенциал на её поверхности, а, значит, и электрическую работу мицеллообразования, поэтому ККМ снижается. Органические кислоты и их соли солюбилилизируются внутрь мицелл вблизи поверхности, также снижая ККМ2, особенно это проявляется при добавках салицилатов и аналогичных соединений из-за специфических взаимодействий.

Роль гидрофильных групп в водных растворах ПАВ заключается в том, чтобы удержать образующиеся агрегаты в воде и регулировать их размер.

Гидратация противоионов способствует отталкиванию, поэтому менее гидратированные ионы легче адсорбируются на поверхности мицелл. В связи с уменьшением степени гидратации и увеличением мицеллярной массы для катионных ПАВ в ряду Cl -

Сравнение свойств ионогенных и неионогенных ПАВ, имеющих одинаковые углеводородные цепи, показывает, что мицеллярная масса ионогенных ПАВ намного меньше, чем для неионогенных.

При добавлении индифферентного электролита мицеллярная масса ионогенных ПАВ растет и ККМ снижается, а мицеллярная масса неионогенных ПАВ практически не изменяется.

Добавление неэлектролитов в водные растворы ПАВ при наличии солюбилизации приводит к повышению устойчивости мицелл, т.е. к уменьшению ККМ.


Исследования водных растворов коллоидных ПАВ показали, что мицеллообразование может происходить только выше некоторой температуры Т к, называемой точкой Крафта (рис.4).

Ниже температуры Т к растворимость ПАВ мала, и в этой области температур существует равновесие между кристаллами и истинным раствором ПАВ. В результате возникновения мицелл общая концентрация ПАВ при увеличении температуры резко возрастает.

раствору и через него к разного типа жидкокристаллическим системам.

Для неионогенных ПАВ, являющихся жидкостями, точка Крафта отсутствует. Более характерной для них является другая температурная граница - точка помутнения . Помутнение связано с увеличением размера мицелл и расслоением системы на две фазы из-за дегидратации полярных групп мицелл с повышением температуры.

Методы определения ККМ основаны на резком изменении физико-химических свойств растворов ПАВ (поверхностного натяжения s, мутности t, удельной электропроводности c, показателя преломления n, осмотического давления p) при переходе от молекулярного раствора к мицеллярному.

В данной работе для определения ККМ используется кондуктометрический метод. Кондуктометрическое определение ККМ основано на измерении концентрационной зависимости электропроводности растворов ионогенных ПАВ.

При концентрации, соответствующей ККМ, на графике электропроводность (W) - концентрация (с) наблюдается излом, обусловленный образованием сферических ионных мицелл (рис.5). Подвижности ионных мицелл меньше подвижности ионов. Кроме того, значительная часть противоионов находится в плотном адсорбционном слое, что существенно уменьшает электропроводность раствора ПАВ.

Определение ККМ в растворе ПАВ с помощью карманного кондуктометра

Необходимые приборы и реактивы.

1. Карманный кондуктометр

2. Химические стаканы вместимостью 50 мл - 6 шт

3. Мерный цилиндр вместимостью 25 мл - 1 шт.

4. Раствор ионогенного ПАВ концентраций 28·10 -3 моль/л, 32·10 -3 моль/л.

5. Дистиллированная вода

Измерения электропроводности с помощью кондуктометра (рис.7) осуществляют в следующем порядке:

1. Готовят растворы ионогенного ПАВ различной концентрации методом разбавления.

2. Наливают их в химические стаканы. Общий объем раствора в стакане »32 мл.

3. Готовят кондуктометр к работе: снимают защитный колпачок, рабочую часть промывают дистиллированной водой. Далее, во избежание погрешности результата, рабочую часть после каждого снятия показаний, промывают дистиллированной водой.

4. Снятие показаний осуществляется следующим образом: рабочую часть прибора помещают в раствор (рис.7), включают прибор переводом кнопки в верхней части прибора, после установления показаний на дисплее их записывают, выключают и промывают рабочую часть прибора струей дистиллированной воды из промывалки. Полученные данные свести в табл.1.

Факторы, влияющие на ККМ

ККМ зависит от многих факторов, но прежде всего определяется строением углеводородного радикала, природой полярной группы, добавками в раствор различных веществ и температурой.

    Длина углеводородного радикала R.

Для водных растворов – в гомологическом ряду для соседних гомологов отношение ККМ ≈ 3,2 имеет значение коэффициента правила Дюкло-Траубе. Чем больше R, тем сильнее понижается энергия системы при мицеллообразовании, поэтому, чем длиннее углеводородный радикал, тем меньше ККМ.

Способность к ассоциации проявляется у молекул ПАВ при R > 8-10 атомов углерода С. Разветвленность, непредельность, циклизация уменьшают склонность к МЦО и ККМ.

Для органической среды при R повышается растворимость и ККМ .

Сильнее всего ККМ в водных растворах зависит от длины углеводородного радикала: в процессе мицеллообразования понижение энергии Гиббса системы тем больше, чем длиннее углеводородная цепь ПАВ, т. е. чем длиннее радикал, тем меньше ККМ. Т.е. чем длиннее углеводородный радикал молекулы ПАВ, тем при меньших концентрациях достигается монослойное заполнение поверхности (Г ) и тем ниже ККМ.

Исследования мицеллообразования показали, что образование ассоциатов молекул ПАВ происходит и в случае углеводородных радикалов, состоящих из 4 - 7 атомов углерода. Однако в таких соединениях недостаточно выражено различие между гидрофильной и гидрофобной частями (высокое значение ГЛБ). В связи с этим энергия агрегирования недостаточна для удержания ассоциатов - они разрушаются под действием теплового движения молекул воды (среды). Способность к мицеллообразованию приобретают молекулы ПАВ, углеводородный радикал которых содержит 8 - 10 и более атомов углерода.

    Характер полярной группы.

В водных растворах ПАВ гидрофильные группы удерживают агрегаты в воде и регулируют их размер.

для водной среды в органической среде

RT lnKKM = a – bn

где a – постоянная, характеризующая энергию растворения функциональной группы (полярные части)

в - постоянная, характеризующая энергию растворения, приходящуюся на одну группу –СН 2 .

Характер полярной группы играет существенную роль при МЦО. Ёе влияние отражает коэффициент a, однако влияние природы полярной группы менее значительно, чем длина радикала.

При равном R то вещество имеет большую ККМ, у которого лучше диссоциирует его полярная группа (наличие ионногенных групп растворимость ПАВ), поэтому при равном радикале ККМ ИПАВ > ККМ НИПАВ.

Наличие ионогенных групп увеличивает растворимость ПАВ в воде, поэтому для перехода ионогенных молекул в мицеллу выигрывается меньше энергии, чем для неионогенных молекул. Поэтому ККМ для ионогенных ПАВ обычно выше, чем для неионогенных, при одинаковой гидрофобности молекулы (числе атомов углерода в цепях).

    Влияние добавок электролитов и полярных органических веществ.

Введение электролитов в растворы ИПАВ и НИПАВ вызывает неодинаковый эффект:

1) в растворах ИПАВ Сэл-та ↓ ККМ.

Основную роль играют концентрация и заряд противоионов. Ионы, заряженные одноименно с ПАВ-ионом в МЦ, слабо влияют на ККМ.

Облегчение МЦО объясняется сжатием диффузного слоя противоионов, подавлением диссоциации молекул ПАВ и частичной дегидратацией ионов ПАВ.

Понижение заряда мицелл ослабляет электростатическое отталкивание и облегчает присоединение новых молекул к мицелле.

На МЦО НИПАВ добавка электролита сказывается мало.

2) Добавление органических веществ в водные растворы ПАВ по-разному влияет на ККМ:

низкомолекулярные соединения (спирты, ацетон) ККМ (если нет солюбилизации)

длинноцепочечные соединения ↓ ККМ (устойчивость мицелл возрастает).

3). Влияние температуры Т.

Наблюдается различный характер влияния Т на ИПАВ и НИПАВ.

    Увеличение Т на растворы ИПАВ усиливает тепловое движение и препятствует агрегации молекул, но интенсивное движение уменьшает гидратацию полярных групп и способствует их объединению.

Многие ПАВ с большим R из-за плохой растворимости не образуют мицеллярных растворов. Однако при изменении Т растворимость ПАВ может возрасти и обнаруживается МЦО.

Т, при кот. увеличивается растворимость ИПАВ из-за образования МЦ, называется точкой Крафта (обычно 283-293 К).

Т. Крафта не совпадает с Т ПЛ тв. ПАВ, а лежит ниже, т.к. в набухшем геле ПАВ гидратировано и это облегчает плавление.

С,моль/л ПАВ+раствор

раст-моть МЦ+р-р

Рис. 7.2. Фазовая диаграмма раствора коллоидного ПАВ вблизи точки Крафта

Для получения ПАВ с низким значение точки Крафта:

а) вводят дополнительный СН 3 – или боковые заместители;

б) вводят непредельную связь «=»;

в) полярный сегмент (оксиэтиленовый) между ионной группой и цепью.

Выше точки К рафта МЦ ИПАВ распадаются на более мелкие ассоциаты – происходит демицеллизация.

(Мицеллообразование происходит в определенном для каждого ПАВ интервале температур, важнейшими характеристиками которого являются точка Крафта и точка помутнения.

Точка Крафта - нижний температурный предел мицеллообразования ионогенных ПАВ, обычно она равна 283 – 293К; при температурах ниже точки Крафта растворимость ПАВ недостаточна для образования мицелл.

Точка помутнения - верхний температурный предел мицеллообразования неионогенных ПАВ, обычные ее значения 323 – 333 К; при более высоких температурах система ПАВ - растворитель теряет устойчивость и расслаивается на две макрофазы.)

2) Т в растворах НИПАВ ↓ ККМ за счет дегидратации оксиэтиленовых цепочек.

В растворах НИПАВ наблюдается температура помутнения – верхний температурный предел МЦО НИПАВ (323-333 К), при более высоких Т система теряет устойчивость и расслаивается на две фазы.

Термодинамика и механизм мицеллообразования (МЦО)

(Истинная растворимость ПАВ обусловлена увеличением энтропии S при растворении и в меньшей мере взаимодействием с молекулами воды.

Для ИПАВ характерна диссоциация в воде, S растворения их значительна.

НИПАВ слабо взаимодействуют с Н 2 О, их растворимость меньше при том же R. Чаще ∆Н>0, поэтому растворимость при Т.

Малая растворимость ПАВ проявляется в «+» поверхностной активности, а с С - в значительной ассоциации молекул ПАВ, переходящей в МЦО.)

Рассмотрим механизм растворения ПАВ. Он состоит из 2 стадий: фазового перехода и взаимодействия с молекулами растворителя – сольватацией (водой и гидратацией):

∆Н ф.п. >0 ∆S ф.п. >0 ∆Н раств. >

∆Н сольват.

G = ∆Н раств . - Т∆ S раств.

Для ИПАВ :

∆Н сольват. большое по величине, ∆Н раств. 0 и ∆G раств.

Для НИПАВ ∆Н раств. ≥0, поэтому при Т растворимость за счет энтропийной составляющей.

Для процесса МЦО характерно ∆Н МЦО. G МЦО = ∆Н МЦО . - Т∆ S МЦО.

Методы определения ККМ

Основаны на регистрации резкого изменения физико-химических свойств растворов ПАВ в зависимости от их концентрации (мутности τ, поверхностного натяжения σ, эквивалентной электропроводности λ, осмотического давления π, показателя преломления n).

Обычно на этих кривых есть излом, т.к. одна ветвь кривой отвечает молекулярному состоянию растворов – вторая часть – коллоидному.

Значения ККМ для данной системы ПАВ - растворитель могут различаться при определении их тем или иным экспериментальным методом или при использовании того или иного способа математической обработки опытных данных.

Все экспериментальные методы определения ККМ (их известно более 70) разделяют на две группы. К одной группе относят методы, не требующие введения в систему ПАВ - растворитель дополнительных веществ. Это построение изотерм поверхностного натяжения  = f(C) или  = f(lnC); измерение электропроводности ( и ) раствора ПАВ; изучение оптических свойств - показателя преломления растворов, светорассеяния; изучение спектров поглощения и спектров ЯМР и др. Хорошо определяется ККМ при построении зависимости растворимости ПАВ от величины 1/T (обратной температуры). Просты и надежны методы потенциометрического титрования и поглощения ультразвука и др.

Вторая группа методов измерения ККМ основана на добавлении в растворы дополнительных веществ и их солюбилизации (коллоидном растворении) в мицеллах ПАВ, которую можно регистрировать с использованием спектральных методов, флуоресценции, ЭПР и др. Ниже приводится краткое описание некоторых методов определения ККМ из первой группы.

Рис. 7.2. Определение ККМ кондуктометрическим методом (слева).

Рис.7.3.Определение ККМ методом измерения поверхностного натяжения

Кондуктометрический метод определения ККМ применяется для ионогенных ПАВ. Если бы в водных растворах ионогенных ПАВ, например, олеата натрия или калия отсутствовало мицеллообразование, то в согласии с уравнением Кольрауша(), экспериментальные точки зависимости эквивалентной электропроводности от концентрации C в координатах  = f() ложились бы вдоль прямой (рис. 7.2). Это выполняется при малых концентрациях ПАВ (10 -3 моль/л), начиная с ККМ, формируются ионные мицеллы, окруженные диффузным слоем противоионов, ход зависимости  = f() нарушается и на линии наблюдается излом.

Другой метод определения ККМ основан на измерении поверхностного натяжения водных растворов ПАВ, которое уменьшается с ростом концентрации вплоть до ККМ, а затем остается практически постоянным. Этот метод применим как для ионогенных, так и для неионогенных ПАВ. Для определения ККМ опытные данные по зависимости  от C обычно представляют в координатах  = f(lnC) (рис. 7.3).

Изотермы σ=f(C) отличаются от изотерм истинных растворов ПАВ более резким ↓σ с С и наличием излома в области малых концентраций (около 10 -3 – 10 -6 моль/л), выше которых σ остается постоянной. Более резко эта точка ККМ выявляется на изотерме σ=f ln(C) в соответствии с

Dσ= Σ Γ i dμ i , для данного компонента μ i = μ i о + RT ln a i dμ i = μ i о + RT dln a i

= - Γ i = - Γ i RT

График зависимости показателя преломления n от концентрации раствора ПАВ представляет собой ломаную линию из двух отрезков, пересекающихся в точке ККМ (рис. 7.4). По этой зависимости можно определить ККМ ПАВ в водных и неводных средах.

В области ККМ истинный (молекулярный) раствор переходит в коллоидный раствор, при этом резко возрастает светорассеяние системы (каждый мог наблюдать рассеяние света на пылинках, взвешенных в воздухе). Для определения ККМ методом светорассеяния измеряют оптическую плотность системы D в зависимости от концентрации ПАВ (рис.7.5), ККМ находят из графика D = f(C).

Рис. 7.4. Определение ККМ методом измерения показателя преломления n.

Рис. 7.5. Определение ККМ методом светорассеяния (справа).

Водные растворы многих поверхностно-активных веществ обладают особыми свойствами, отличающими их как от истинных растворов низкомолекулярных веществ, так и от коллоидных систем. Одной из отличительных особенностей растворов ПАВ является возможность существования их как в виде молекулярно-истинных растворов, так и в виде мицеллярных - коллоидных.

ККМ - это концентрация , при достижении которой при добавлении ПАВ в раствор концентрация на границе раздела фаз остается постоянной, но в то же время происходит самоорганизация молекул ПАВ в объёмном растворе (мицеллообразование или агрегация). В результате такой агрегации образуются так называемые Отличительным признаком мицеллообразования служит помутнение раствора ПАВ. Водные растворы ПАВ, при мицеллообразовании также приобретают голубоватый оттенок (студенистый оттенок) за счёт преломления света мицеллами.

Переход из молекулярного состояния в мицеллярное происходит, как правило, в достаточно узкой области концентраций, ограниченной, так называемыми, граничными концентрациями. Впервые наличие таких граничных концентраций обнаружил шведский ученый Экваль. Он установил, что при граничных концентрациях многие свойства растворов резко меняются. Эти граничные концентрации лежат ниже и выше средней ККМ; только при концентрациях, меньших минимальной граничной концентрации, растворы ПАВ аналогичны истинным растворам низкомолекулярных веществ.

Методы определения ККМ:

Определение ККМ может осуществляться при изучении практически любого свойства растворов в зависимости от изменения их концентрации. Наиболее часто в исследовательской практике используются зависимости мутности растворов, поверхностного натяжения, электрической проводимости, коэффициента преломления света и вязкости от общей концентрации растворов. Примеры получающихся зависимостей приведены на рисунках:

рис.1 - поверхностное натяжение (s) растворов додецилсульфата натрия при 25 о С

рис.2 - эквивалентная электрическая проводимость (l) растворов децилтриметиламмоний бромида при 40 о С

рис.3 - удельная электрическая проводимость (k) растворов децилсульфата натрия при 40 о С

рис.4 - вязкость (h/с) растворов додецилсульфата натрия при 30 о С

Исследование любого свойства растворов ПАВ от его концентрации позволяет определить среднюю концентрацию , при которой система совершает переход в коллоидное состояние. К настоящему моменту описано более сотни разнообразных методов определения критической концентрации мицеллообразования; некоторые из них, кроме ККМ, позволяют также получать богатую информацию о структуре растворов, величине и форме мицелл, их гидратации и т.д. Мы остановимся только на тех методах определения ККМ, которые используются наиболее часто.

Для определения ККМ по изменению поверхностного натяжения растворов ПАВ часто используются методы максимального давления в газовом пузырьке , сталагмометра, отрыва кольца или уравновешивания пластины, измерения объема или формы висящей или лежащей капли, взвешивания капель и др .Определение ККМ этими методами основано на прекращении изменения поверхностного натяжения раствора при предельном насыщении адсорбционного слоя на поверхности раздела «вода - воздух», «углеводород - вода», «раствор - твердая фаза». Наряду с определением ККМ эти методы позволяют найти величину предельной адсорбции, минимальную площадь, приходящуюся на молекулу в адсорбционном слое. На основании экспериментальных значений поверхностной активности на границе «раствор-воздух» и предельных площадей, приходящихся на молекулу в насыщенном адсорбционном слое, может быть определена также длина полиоксиэтиленовой цепи неионогенных ПАВ и величина углеводородного радикала. Определение ККМ при различных температурах часто используют для расчета термодинамических функций мицеллообразования.

Исследования показывают, что наиболее точные результаты получаются при измерении поверхностного натяжения растворов ПАВ методом уравновешивания пластины . Достаточно хорошо воспроизводятся результаты, найденные сталогмометрическим методом . Менее точные, но достаточно корректные данные получаются при использовании метода отрыва кольца . Плохо воспроизводятся результаты чисто динамических методов.

  • При определении ККМ вискозиметричесим методом экспериментальные данные выражают обычно в виде зависимости приведенной вязкости от концентрации растворов ПАВ. Вискозиметрический метод также позволяет определить наличие граничных концентраций мицеллообразования и гидратацию мицелл по характеристической вязкости. Этот метод особенно удобен для неионогенных ПАВ в связи с тем, что у них отсутствует электровязкостный эффект.
  • Определение ККМ по светорассеянию основано на том, что при образовании мицелл в растворах ПАВ резко возрастает рассеяние света частицами и увеличивается мутность системы. По резкому изменению мутности раствора и определяют ККМ. При измерении оптической плотности или светорассеяния растворов ПАВ часто наблюдают аномальное изменение мутности, особенно в том случае, если ПАВ содержит некоторое количество примесей. Данные светорассеяния используют для определения мицеллярной массы, чисел агрегации мицелл и их формы.
  • Определение ККМ по диффузии проводят измеряя коэффициенты диффузии, которые связаны как с размером мицелл в растворах, так и с их формой и гидратацией. Обычно значение ККМ определяют по пересечению двух линейных участков зависимости коэффициента диффузии от разведения растворов. Определение коэффициента диффузии позволяет рассчитать гидратацию мицелл или их размер. Совмещая данные измерения коэффициента диффузии и коэффициента седиментации в ультрацентрифуге, можно определить мицеллярную массу. Если измерить гидратацию мицелл независимым методом, то по коэффициенту диффузии можно определить форму мицелл. Наблюдение за диффузией проводится обычно при введении в растворы ПАВ дополнительного компонента – метки мицелл, поэтому метод может дать искаженные результаты при определении ККМ, если произойдет смещение мицеллярного равновесия. В последнее время коэффициент диффузии измеряют при использовании радиоактивных меток на молекулах ПАВ. Такой способ не смещает мицеллярного равновесия и дает наиболее точные результаты.
  • Определение ККМ рефрактометрическим методом основано на изменении коэффициента преломления растворов ПАВ при мицеллообразовании. Этот метод удобен тем, что не требует введения дополнительных компонентов или применения сильного внешнего поля, которые могут сместить равновесие «мицеллы-молекулы», и оценивает свойства системы практически в статических условиях. Он требует, однако, тщательного термостатирования и точного определения концентрации растворов, а также необходимости учета времени эксперимента в связи с изменением коэффициента преломления стекла за счет адсорбции ПАВ. Метод дает хорошие результаты для неионогенных ПАВ с невысокой степенью оксиэтилирования.
  • В основе определения ККМ ультраакустическим методом лежит изменение характера прохождения ультразвука через раствор при образовании мицелл. При изучении ионогенных ПАВ этот метод удобен даже для весьма разбавленных растворов. Растворы неионогенных веществ труднее поддаются характеристике этим методом, особенно если растворенное вещество имеет малую степень оксиэтилирования. С помощью ультраакустического метода можно определить гидратацию молекул ПАВ как в мицеллах, так и в разбавленных растворах.
  • Широко распространенный кондуктометрический метод ограничен только растворами ионогенных веществ. Кроме ККМ он позволяет определить степень диссоциации молекул ПАВ в мицеллах, что необходимо знать для корректировки мицеллярных масс, найденных по светорассеянию, а также для введения поправки на электровязкостный эффект при расчете гидратации и чисел ассоциации методами, связанными с явлениями переноса.
  • Иногда используются такие методы, как ядерный магнитный резонанс или электронный парамагнитный резонанс , которые дают возможность кроме ККМ измерять «время жизни» молекул в мицеллах, а также как ультрафиолетовая и инфракрасная спектроскопия, которые позволяют выявить расположение молекул солюбилизата в мицеллах.
  • Полярографические исследования, так же как и измерения рН растворов, часто связаны с необходимостью введения третьего компонента в систему, что, естественно, искажает результаты определения ККМ. Методы солюбилизации красителя, солюбилизационного титрования и хроматографии на бумаге , к сожалению оказываются недостаточно точными для измерения ККМ, но зато позволяют судить о структурных изменениях мицелл в относительно концентрированных растворах.

Рассмотрим более подробно распределение молекул ПАВ в растворе (см. рис. 21.1). Часть молекул ПАВ адсорбируется на границе раздела жидкость -- газ (вода -- воздух). Все закономерности, которые были ранее рассмотрены для адсорбции ПАВ на границе раздела жидкости с газовой средой (См. гл. 4 и 5), справедливы и для коллоидных ПАВ. Между молекулами ПАВ в адсорбционном слое 1 и молекулами в растворе 2 существует динамическое равновесие. Часть молекул ПАВ в растворе способна образовывать мицеллы 3 ; между молекулами ПАВ в растворе и молекулами, входящими в состав мицелл, также существует равновесие. Это равновесие на рис. 21.1 показано стрелками.

Процесс образования мицелл из молекул растворенных ПАВ можно представить следующим образом:

mM ? (M) m (21.5)

где М -- молекулярная масса молекулы ПАВ; m -- число молекул ПАВ в мицелле.

Состояние ПАВ в растворе зависит от их концентрации. При небольших концентрациях (10- 4 --10- 2 M ) образуются истинные растворы, а ионогенные ПАВ проявляют свойства электролитов. При достижении критической концентрации мицеллообразования (ККМ) образуются мицеллы, которые находятся в термодинамическом равновесии с молекулами ПАВ в растворе. При концентрации ПАВ выше ККМ избыток ПАВ переходит в мицеллы. При значительном содержании ПАВ могут образовываться жидкие кристаллы (см. параграф 21.4) и гели.

В области, близкой к ККМ, образуются сферические мицеллы (рис. 21.3). При увеличении концентрации ПАВ возникают пластинчатые (рис. 21.1) и цилиндрические мицеллы.

Мицеллы состоят из жидкого углеводородного ядра 4 (рис. 21.1), покрытого слоем полярных ионогенных групп 5 . Жидкое состояние углеводородных цепей структурно упорядоченно и тем отличается от объемной жидкой (водной) фазы.

Слой полярных групп молекул ПАВ выступает над поверхностью ядра на 0,2--0,5 нм, формируя потенциалобразующий слой (см. параграф 7.2). Возникает двойной электрический слой, который обусловливает электрофоретическую подвижность мицелл.

Гидрофильная полярная оболочка мицелл резко снижает межфазовое поверхностное натяжение у на границе мицелла -- жидкость (вода). При этом соблюдается условие (10.25), что означает самопроизвольное образование мицелл, лиофильность мицеллярного (коллоидного) раствора и его термодинамическую устойчивость.

Важнейшим поверхностным свойством в растворах ПАВ является поверхностное натяжение у (см. рис. 2.3), а к числу объемных свойств следует отнести осмотическое давление р (см. рис. 9.4) и молярную электропроводность?л, которая характеризует способность раствора, содержащего ионы, проводить электрический ток.

На рис. 21.2 показаны изменения поверхностного натяжения у ЖГ (кривая 2 ), осмотического давления р (кривая 3 ) и молярной электропроводности л (кривая 4 ) в зависимости от концентрации раствора додецилсульфата натрия, который диссоциирует согласно уравнению (21.3). Область, в которой прекращается снижение поверхностного натяжения растворов коллоидных ПАВ и называют критической концентрацией мицеллообразования. (ККМ).

[Введите текст]

Осмотическое давление р (кривая 3 ) сначала в соответствии с формулой (9.11) по мере увеличения концентрации ПАВ растет. В области ККМ этот рост прекращается, что связано с образованием мицелл, размер которых значительно превышает размер молекул растворенных ПАВ. Прекращение роста осмотического давления в связи с увеличением размеров частиц непосредственно следует из формулы (9.13), согласно которой осмотическое давление обратно пропорционально кубу радиуса частиц r 3 . Связывание молекул ПАВ в мицеллы снижает их концентрацию в растворе как электролитов. Этим обстоятельствоми объясняется снижение молярной электропроводности в области ККМ (кривая 4 ).

Математически ККМ можно определить как точку перегиба на кривых «cвойство растворов коллоидных ПАВ -- концентрация» (см. рис. 21.2), когда вторая производная этого свойства становится равной нулю, т.е. d 2 N /dc 2 = 0. Мицеллообразование следует рассматривать как процесс, аналогичный фазовому переходу от истинного раствора ПАВ к ассоциированному состоянию в мицеллах; при этом мицеллообразование происходит самопроизвольно.

Концентрация ПАВ в мицеллярной форме значительно, на несколько порядков, превышает концентрацию ПАВ в растворе. Мицеллы дают возможность получать растворы коллоидных ПАВ с большим содержанием растворенного вещества по сравнению с истинными растворами. Кроме того, мицеллы являются своеобразным хранилищем ПАВ. Равновесие между различным состоянием ПАВ в растворе (см. рис. 21.1) подвижное, и по мере израсходования ПАВ, например при увеличении поверхности раздела фаз, часть молекул ПАВ в растворе пополняется за счет мицелл.

ККМ -- это важнейшее и отличительное свойство коллоидных ПАВ. ККМ соответствует концентрации ПАВ, при которой в растворе возникают мицеллы, находящиеся в термодинамическом равновесии с молекулами (ионами) ПАВ. В области ККМ резко изменяются поверхностные и объемные свойства растворов.

ККМ выражают в молях на литр или в процентах растворенного вещества. Для стеарата кальция при 323К ККМ равна 5.10- 4 моль/л, а для эфиров сахарозы (0,51,0)10- 5 моль/л.

Значения ККМ невысокие, достаточно небольшого количества ПАВ, чтобы проявились объемные свойства их растворов, Еще раз подчеркнем, что не все ПАВ в состоянии образовывать мицеллы. Необходимым условием мицеллообразования являются наличие полярной группы в молекуле ПАВ (см. рис. 5.2) и достаточно большая длина углеводородного радикала.

Мицеллы образуются и в неводных растворах ПАВ. Ориентация молекул ПАВ в неполярных растворителях противоположна их ориентации в воде, т.е. гидрофобный радикал, обращен к углеводородной жидкости.

ККМ проявляется в некотором интервале концентрации ПАВ (см. рис. 21.2). C ростом концентрации ПАВ могут происходить два процесса: увеличение числа сферических мицелл и изменение их формы. Сферические мицеллы теряют правильную форму и могут превращаться в пластинчатые.

Таким образом, в области ККМ происходит наиболее значительное изменение объемных и поверхностных свойств растворов коллоидных ПАВ, а на кривых, характеризующих эти свойства, появляются перегибы (см. рис. 21.2).

Объемные свойства коллоидных ПАВ проявляются в таких процессах, как солюбилизация, образование пен, эмульсий и суспензий. Наиболее интересным и специфическим из этих свойств является солюбилизация.

Солюбилизацией называют растворение в растворах коллоидных ПАВ тех веществ, которые в данной жидкости обычно нерастворимы. Например, в результате солюбилизации в водных растворах ПАВ растворяются углеводородные жидкости, в частности бензин и керосин, а также жиры, которые в воде не растворяются.

[Введите текст]

Солюбилизация связана с проникновением в мицеллы веществ, которые называют солюбилизатами. Механизм солюбилизации для различной природы солюбилизатов можно пояснить при помощи рис. 21.3. При солюбилизации происходит внедрение неполярных веществ (бензола, гексана, бензина и др.) в мицеллу. Если солюбилизат содержит полярную и неполярную группы, то он располагается в мицелле углеводородным концом внутрь, а полярная группа обращена наружу. В отношении солюбилизатов, содержащих несколько полярных групп, наиболее вероятна адсорбция на наружном слое поверхности мицелл.

Солюбилизация начинается тогда, когда концентрация ПАВ достигает ККМ. При концентрации ПАВ выше ККМ число мицелл увеличивается, и солюбилизация идет более интенсивно. Солюбилизирующая способность коллоидных ПАВ растет в пределах данного гомологического ряда по мере увеличения числа углеводородных радикалов. Ионогенные ПАВ обладают большей солюбилизирующей способностью по сравнению с неиногенными.

Особенно значительна солюбилизирующая способность биологически активных коллоидных ПАВ -- хелата и дезоксихелата натрия. Солюбилизация и эмульгирование (см. параграф 15.4) являются первичными процессами усвоения жиров; в результате солюбилизации жиры растворяются в воде, а затем усваиваются организмом.

Таким образом, объемные свойства растворов коллоидных ПАВ обязаны образованию мицелл.

Текущая страница: 11 (всего у книги 19 страниц) [доступный отрывок для чтения: 13 страниц]

67. Химические методы получения коллоидных систем. Методы регулирования размеров частиц в дисперсных системах

Существует большое число методов получения коллоидных систем, позволяющих тонко регулировать размеры частиц, их форму и строение. Т. Сведберг предложил разделить методы получения коллоидных систем на две группы: диспергационные (механическое, термическое, электрическое измельчение или распыление макроскопической фазы) и конденсационные (химическая или физическая конденсация).

Получение золей. В основе процессов лежат реакции конденсации. Процесс протекает в две стадии. Сначала формируются зародыши новой фазы а затем в золе создается слабое пересыщение, при котором уже не происходит образования новых зародышей, а идет только их рост. Примеры. Получение золей золота.



2KAuO 2 + 3HСHO + K 2 CO 3 = 2Au + 3HCOOK + КНСО 3 + H 2 O

На образующихся микрокристаллах золота адсорбируются ионы аурата, являющиеся потенциалобразующими ионами. Противоионами служат ионы К +

Состав мицеллы золя золота схематически можно изобразить так:

{mnAuO 2 - (n-x)K + } x- xK+.

Можно получить желтые (d ~ 20 нм), красные (d ~ 40 нм) и синие (d ~ 100 нм) золи золота.

Золь гидроксида железа может быть получен по реакции:



При получении золей важно тщательно соблюдать условия проведения реакции, в частности необходимы строгий контроль рН и присутствие ряда органических соединений в системе.

С этой целью поверхность частиц дисперсной фазы ингибируют за счет образования на ней защитного слоя из ПАВ или за счет образования на ней комплексных соединений.

Регулирование размеров частиц в дисперсных системах на примере получения твердых наночастиц. Смешиваются две идентичные обратные микроэмульсионные системы, водные фазы которых содержат вещества А и В , образующие в ходе химической реакции труднорастворимое соединение. Размеры частиц новой фазы будут ограничены размером капель полярной фазы.

Наночастицы металлов могут быть получены также при введении в микроэмульсию, содержащую соль металла, восстановителя (например, водорода или гидразина) или при пропускании газа (например, СО или H 2 S) через эмульсию.

Факторы, влияющие на протекание реакции:

1) соотношение водной фазы и ПАВ в системе (W = / [ПАВ]);

2) структура и свойства солюбилизированной водной фазы;

3) динамическое поведение микроэмульсий;

4) средняя концентрация реагирующих веществ в водной фазе.

Однако во всех случаях размер наночастиц, образующихся в процессах реакции, контролируется размером капель исходной эмульсии.

Микроэмульсионные системы используют для получения органических соединений. Большинство исследований в этой области относится к синтезу наночастиц сферической формы. Вместе с тем большой научный и практический интерес представляет получение асимметричных частиц (нитей, дисков, эллипсоидов) с магнитными свойствами.

68. Лиофильные коллоидные системы. Термодинамика самопроизвольного диспергирования по Ребиндеру-Щукину

Лиофильными коллоидными системами называются ультрамикрогенные системы, которые самопроизвольно образуются из макроскопических фаз, являются термодинамически устойчивыми как для относительно укрупненных частиц дисперсной фазы, так и для частиц при их дроблении до молекулярных размеров. Образование лиофильных коллоидных частиц может определяться приростом свободной поверхностной энергии при разрушении макрофазового состояния, которая, возможно, компенсируется вследствие повышения энтропийного фактора, прежде всего броуновского движения.

При низких значениях поверхностного натяжения могут самопроизвольно путем разложения макрофазы возникать стабильные лиофильные системы.

К лиофильным коллоидным системам относят коллоидные поверхностно-активные вещества, растворы высокомолекулярных соединений, а также студни. Если учесть, что критическое значение поверхностного натяжения сильно зависит от диаметра лиофильных частиц, то образование системы с частицами больших размеров возможно при более низких значениях свободной межфазной энергии.

Рассматривая зависимость при изменении свободной энергии монодисперсной системы от размера всех частиц, необходимо учитывать влияние дисперсии на некоторую величину свободной удельной энергии частиц, находящихся в дисперсной фазе.

Образование равновесной коллоидно-дисперсной системы возможно только при условии, что все значения диаметра частиц могут лежать именно в той области дисперсности, где размер этих частиц может превышать размеры молекул.

Исходя из вышесказанного условие образования лиофильной системы и условие ее равновесности можно представить в виде уравнения Ребиндера-Щукина:



выражения, характерного условию самопроизвольного диспергирования.

При достаточно низких, но изначально конечных значениях σ (изменение межфазной энергии) может происходить самопроизвольное диспергирование макрофазы, могут возникать термодинамические равновесные лиофильные дисперсные системы с едва заметной концентрацией частиц дисперсной фазы, которые в значительной степени будут превосходить молекулярные размеры частиц.

Значение критерия RS может определять условия равновесия лиофильной системы и возможность ее самопроизвольного возникновения из той же макрофазы, которая убывает с ростом концентрации частиц.

Диспергирование – это тонкое измельчение твердых, жидких тел в какой-либо среде, в результате чего получают порошки, суспензии, эмульсии. Диспергирование применяют для получения коллоидных и вообще дисперсных систем. Диспергирование жидкостей обычно называют распылением, если оно происходит в газовой фазе, и эмульгированием, когда его проводят в другой жидкости. При диспергирование твердых тел происходит их механическое разрушение.

Условие самопроизвольного образования лиофильной частицы дисперсной системы и ее равновесия можно также получить, используя кинетические процессы, например при помощи теории флуктуаций.

При этом получаются заниженные значения, поскольку флуктуация не учитывает некоторые параметры (время ожидания флуктуаций данного размера).

Для реальной системы могут возникать частицы имеющие дисперсную природу, с определенными распределениями по размерам.

Исследования П. И. Ребиндера и Е. Д. Щукина позволили рассмотреть процессы устойчивости критических эмульсий, определи процессы образования, привели расчеты различных параметров для таких систем.

69. Мицеллообразование в водных и неводных средах. Термодинамика мицеллообразования

Мицеллообразование – самопроизвольная ассоциация молекул поверхностно-активных веществ (ПАВ) в растворе.

Поверхностно-активные вещества (ПАВ) – вещества, адсорбция которых из жидкости на поверхности раздела с другой фазой приводит к значительному понижению поверхностного натяжения.

Строение молекулы ПАВ – дифильное: полярная группа и неполярный углеводородный радикал.


Строение молекул ПАВ


Мицелла – подвижный молекулярный ассоциат, существующий в равновесии с соответствующим мономером, причем молекулы мономера постоянно присоединяются к мицелле и отщепляются от нее (10 –8 –10 –3 с). Радиус мицелл 2–4 нм, агрегируются 50–100 молекул.

Мицеллообразование – процесс, аналогичный фазовому переходу, при котором происходит резкий переход от молекулярно-дисперсного состояния ПАВ в растворителе к ассоциированному в мицеллы ПАВ при достижении критической концентрации мицеллообразования (ККМ).

Мицеллообразование в водных растворах (прямые мицеллы) обусловлено равенством сил притяжения неполярных (углеводородных) частей молекул и отталкивания полярных (ионогенных) групп. Полярные группы ориентированы в сторону водной фазы. Процесс мицеллообразования имеет энтропийную природу и связан с гидрофобными взаимодействиями углеводородных цепей с водой: объединение углеводородных цепей молекул ПАВ в мицеллу ведет к росту энтропии из-за разрушения структуры воды.

При формировании обратных мицелл полярные группы объединяются в гидрофильное ядро, а углеводородные радикалы образуют гидрофобную оболочку. Энергетический выигрыш мицеллообразования в неполярных средах обусловлен выгодностью замены связи «полярная группа – углеводород» на связь между полярными группами при их объединении в ядро мицеллы.


Рис. 1. Схематическое представление


Движущими силами образования мицелл являются межмолекулярные взаимодействия:

1) гидрофобное отталкивание между углеводородными цепями и водным окружением;

2) отталкивание одноименно заряженных ионных групп;

3) вандерваальсово притяжение между алкильными цепями.

Появление мицелл возможно лишь выше некоторой температуры, которая называется точкой Крафта . Ниже точки Крафта ионные ПАВ, растворяясь, образуют гели (кривая 1), выше – возрастает общая растворимость ПАВ (кривая 2), истинная (молекулярная) растворимость существенно не меняется (кривая 3).


Рис. 2. Образование мицилл

70. Критическая концентрация мицеллообразования (ККМ), основные методы определения ККМ

Критическая концентрация мицеллообразвания (ККМ) – концентрация ПАВ в растворе, при которой в системе образуется в заметных количествах устойчивые мицеллы и резко изменяется ряд свойств раствора. Появление мицелл фиксируется по изменению кривой зависимости свойства раствора от концентрации ПАВ. Свойствами могут быть поверхностное натяжение, электропроводность, ЭДС, плотность, вязкость, теплоемкость, спектральные свойства и т. д. Наиболее распространенные методы определения ККМ: по измерению поверхностного натяжения электропроводности, светорассеяния, растворимости неполярных соединений (солюбилизации) и абсорбции красителей. Область ККМ для ПАВ с числом атомов углерода в цепи 12–16 находится в интервале концентраций 10 –2 –10 –4 моль/л. Определяющим фактором является соотношение гидрофильных и гидрофобных свойств молекулы ПАВ. Чем длиннее углеводородный радикал и менее полярна гидрофильная группа, тем меньше величина ККМ.

Значения ККМ зависят от:

1) положения ионогенных групп в углеводородном радикале (ККМ увеличивается при смещении их к середине цепи);

2) наличия в молекуле двойных связей и полярных групп (наличие увеличивает ККМ);

3) концентрации электролита (увеличение концентрации приводит к снижению ККМ);

4) органических противоионов (присутствие противоионов уменьшает ККМ);

5) органических растворителей (увеличение ККМ);

6) температуры (имеет сложную зависимость).

Поверхностное натяжение раствора σ определяется концентрацией ПАВ в молекулярной форме. Выше значения ККМ σ практически не меняется. По уравнению Гиббса, dσ = – Гdμ , при σ = const, химический потенциал (μ ) практически не зависит от концентрации при с о > ККМ. До ККМ раствор ПАВ близок по своим свойствам к идеальному, а выше ККМ начинается резко отличаться по свойствам от идеального.

Система «ПАВ – вода» может при изменении содержания компонентов переходить в различные состояния.

ККМ, при которой из мономерных молекул ПАВ образуются сферические мицеллы, т. н. мицеллы Гартли-Ребиндера – ККМ 1 (резко изменяются физико-химические свойства раствора ПАВ). Концентрация, при которой начинается изменение мицеллярных свойств, называется второй ККМ (ККМ 2). Происходит изменение структуры мицелл – сферической к цилиндрической через сфероидальную. Переход сфероидальной формы в цилиндрическую (ККМ 3), как и сферической в сфероидальную (ККМ 2), происходит в узких концентрационных областях и сопровождается ростом числа агрегации и уменьшением площади поверхности раздела «мицелла – вода», приходящейся на одну молекулу ПАВ в мицелле. Более плотная упаковка молекул ПАВ, большая степень ионизации мицелл, более сильный гидрофобный эффект и электростатическое отталкивание приводят к уменьшению солюбилизирующей способности ПАВ. При дальнейшем увеличении концентрации ПАВ уменьшается подвижность мицелл, и происходит их сцепление концевыми участками, при этом образуется объемная сетка – коагуляционная структура (гель) с характерными механическими свойствами: пластичностью, прочностью, тиксотропией. Подобные системы с упорядоченным расположением молекул, обладающие оптической анизотропией и механическими свойствами, промежуточными между истинными жидкостями и твердыми телами, называют жидкими кристаллами. При увеличении концентрации ПАВ гель переходит в твердую фазу – кристалл. Критическая концентрация мицеллообразвания (ККМ) – концентрация ПАВ в растворе, при которой в системе образуются в заметных количествах устойчивые мицеллы и резко изменяется ряд свойств раствора.

71. Мицеллообразование и солюбилизация в прямых и обратных мицеллах. Микроэмульсии

Явление образования термодинамически устойчивого изотропного раствора обычно малорастворимого вещества (солюбилизата) при добавлении ПАВ (солюбилизатора) называют солюбилизацией . Одним из наиболее важных свойств мицеллярных растворов является их способность солюбилизировать различные соединения. Например, растворимость октана в воде составляет 0,0015 %, а в 10 %-ном растворе олеата натрия растворяется 2 % октана. Солюбилизация растет с увеличением длины углеводородного радикала ионных ПАВ, а для неионных – с увеличением числа оксиэтиленовых звеньев. На солюбилизацию сложным образом влияют присутствие и природа органических растворителей, сильных электролитов, температура, другие вещества, природа и структура солюбилизата.

Различают прямую солюбилизацию («дисперсионная среда – вода») и обратную («дисперсионная среда – масло»).

В мицелле солюбилизат может удерживаться за счет сил электростатического и гидрофобного взаимодействия, а также других, например водородного связывания.

Известно несколько способов солюбилизации веществ в мицелле (микроэмульсии), зависящих как от соотношения его гидрофобных и гидрофильных свойств, так и от возможных химических взаимодействий между солюбилизатом и мицеллой. Строение микроэмульсий «масло – вода» сходно со строением прямых мицелл, поэтому способы солюбилизации будут идентичны. Солюбилизат может:

1) находиться на поверхности мицеллы;

2) ориентироваться радиально, т. е. полярная группа – на поверхности, а неполярная – в ядре мицеллы;

3) полностью погружаться в ядро, а в случае неионных ПАВ – располагаться в полиоксиэтиленовом слое.

Количественная способность к солюбилизации характеризуется величиной относительной солюбилизации s – отношением числа молей солюбилизированного вещества N сол. к числу молей ПАВ, находящегося в мицеллярном состоянии N миц:



Микроэмульсии относятся к микрогетерогенным самоорганизующимся средам и являются многокомпонентными жидкими системами, содержащими частицы коллоидного размера. Образуются они самопроизвольно при смешении двух жидкостей с ограниченной взаимной растворимостью (в простейшем случае воды и углеводорода) в присутствии мицеллообразующего ПАВ. Иногда для образования гомогенного раствора необходимо добавлять немицеллобразующий ПАВ, т. н. ко-ПАВ (спирт, амин или эфир), и электролит. Размер частиц дисперсной фазы (микрокапель) составляет 10–100 нм. Благодаря малым размерам капель микроэмульсии прозрачны.

От классических эмульсий микроэмульсии отличаются размером диспергированных частиц (5–100 нм для микроэмульсий и 100 нм – 100 мкм для эмульсий), прозрачностью и стабильностью. Прозрачность микроэмульсий связана с тем, что размер их капель меньше длины волны видимого света. Водные мицеллы могут вбирать в себя одну или несколько молекул растворенного вещества. Микрокапля микроэмульсии обладает большей поверхностью и большим внутренним объемом.

Мицеллообразование и солюбилизация в прямых и обратных мицеллах. Микроэмульсии.

Микроэмульсии обладают рядом уникальных свойств, которых нет у мицелл, монослоев или полиэлектролитов. Водные мицеллы могут вбирать в себя одну или несколько молекул растворенного вещества. Микрокапля микроэмульсии обладает большей поверхностью и большим внутренним объемом переменной полярности, может вбирать существенно больше молекул растворяемого вещества. Эмульсии в этом отношении близки к микроэмульсиям, но у них меньше поверхностный заряд, они полидисперсны, нестабильны и непрозрачны.

72. Солюбилизация (коллоидное растворение органических веществ в прямых мицеллах)

Важнейшим свойством водных растворов ПАВ является солюбилизация. Процесс солюбилизации связан с гидрофобными взаимодействиями. Выражается солюбилизация в резком повышении растворимости в воде в присутствии ПАВ малополярных органических соединений.

В водных мицеллярных системах (прямые мицеллы) солюбилизируются вещества, нерастворимые в воде, например бензол, органические красители, жиры.

Это обусловлено тем, что ядро мицеллы проявляет свойства неполярной жидкости.

В органических мицеллярных растворах (обратные мицеллы) , в которых внутренняя часть мицелл состоит из полярных групп, солюбилизируются полярные молекулы воды, причем количество связанной воды может быть значительным.

Растворяемое вещество называется солюбилизатом (или субстратом ), а ПАВ – солюбилизатором .

Процесс солюбилизации является динамическим: субстрат распределяется между водной фазой и мицеллой в соотношении, зависящем от природы и гидрофильно-липофильного баланса (ГЛБ) обоих веществ.

Факторы, влияющие на процесс солюбилизации:

1) концентрация ПАВ . Количество солюбилизированного вещества увеличивается пропорционально концентрации раствора ПАВ в области сферических мицелл и дополнительно резко возрастает при образовании пластинчатых;

2) длина углеводородного радикала ПАВ . С увеличением длины цепи для ионных ПАВ или числа оксиэтилированных звеньев для неионных ПАВ солюбилизация увеличивается;

3) природа органических растворителей;

4) электролиты . Добавление сильных электролитов обычно сильно увеличивает солюбилизацию вследствие уменьшения ККМ;

5) температура . При повышении температуры солюбилизация возрастает;

6) присутствие полярных и неполярных веществ;

7) природа и структура солюбилизата.

Стадии процесса солюбилизации:

1) адсорбция субстрата на поверхности (быстрая стадия);

2) проникновение субстрата в мицеллу или ориентация внутри мицеллы (более медленная стадия).

Способ включения молекул солюбилизата в мицеллы водных растворов зависит от природы вещества. Неполярные углеводороды в мицелле располагаются в углеводородных ядрах мицелл.

Полярные органические вещества (спирты, амины, кислоты) встраиваются в мицеллу между молекулами ПАВ так, чтобы их полярные группы были обращены к воде, а гидрофобные части молекул ориентированы параллельно углеводородным радикалам ПАВ.

В мицеллах неионных ПАВ молекулы солюбилизата, например фенола, закрепляются на поверхности мицеллы, располагаясь между беспорядочно изогнутыми полиоксиэтиленовыми цепями.

При солюбилизации неполярных углеводородов в ядрах мицелл углеводородные цепи раздвигаются, в результате размер мицелл увеличивается.

Явление солюбилизации находит широкое применение в различных процессах, связанных с применением ПАВ. Например, в эмульсионной полимеризации, получении фармацевтических препаратов, пищевых продуктов.

Солюбилизация – важнейший фактор моющего действия ПАВ. Это явление играет большую роль в жизнедеятельности живых организмов, являясь одним из звеньев процесса обмена веществ.

73. Микроэмульсии, строение микрокапель, условия образования, фазовые диаграммы

Различают два типа микроэмульсий (рис. 1): распределение капелек масла в воде (м/в) и воды в масле (в/м). Микроэмульсии испытывают структурные превращения при изменениях относительных концентраций масла и воды.


Рис. 1. Схематическое представление микроэмульсий


Микроэмульсии образуются только при определенных соотношениях компонентов в системе. При изменении числа компонентов, состава или температуры в системе происходят макроскопические фазовые превращения, которые подчиняются правилу фаз и анализируются с помощью диаграмм состояния.

Обычно строят «псевдотройные» диаграммы. В качестве одного компонента рассматривают углеводород (масло), другого – воду или электролит, третьего – ПАВ и ко-ПАВ.

Построение фазовых диаграмм проводят по методу сечений.

Обычно левый нижний угол данных диаграмм соответствует весовым долям (процентам) воды или солевого раствора, правый нижний угол – углеводороду, верхний – ПАВ или смеси ПАВ: ко-ПАВ с определенным их соотношением (чаще 1:2).

В плоскости треугольника составов кривая отделяет область существования однородной (в макроскопическом смысле) микроэмульсии от областей, где микроэмульсия расслаивается (рис. 2).

Непосредственно вблизи кривой существуют набухшие мицеллярные системы типов «ПАВ – вода» с солюбилизированным углеводородом и «ПАВ – углеводород» с солюбилизированной водой.

ПАВ (ПАВ: ко-ПАВ) = 1:2


Рис. 2. Фазовая диаграмма микроэмульсионной системы


По мере увеличения отношения вода/масло в системе происходят структурные переходы:

микроэмульсия в/м → цилиндры воды в масле → ламелярная структура ПАВ, масла и воды → микроэмульсия м/в.