Научно-исследовательский проект

«Ракетостроение:

прошлое, настоящее, будущее»

Научный руководитель: Дарья Владимировна

1. Введение. 3

2. История зарождения ракетостроения. 4

3. Первые шаги в космосе. 7

4. Современные достижения в космонавтике. 14

5. Имитация запуска ракеты в домашних условиях. 16

6. Заключение. 17

7. Список используемой литературы: 18


Введение

Узнать с чего начиналось ракетостроение;

Изучить первые шаги в космосе,

Узнать современные достижения в космонавтике,

Имитировать запуск ракеты в домашних условиях.

История зарождения ракетостроения

В конце 9 века китайцы изобрели порох, который поначалу использовали для изготовления петард, которые они прикрепляли к кончикам стрел и пускали в сторону врагов. Взрывы пугали лошадей и сеяли панику. Очень скоро китайские оружейники заметили, что непрочно укрепленные петарды летели сами по себе: так был открыт принцип запуска ракеты. Вскоре порох стал широко применяться в военном деле, гранаты, пушки, ружья. Военные стратеги доверяли пушкам с прямой наводкой больше, чем неуправляемым ракетам, но воздушные снаряды оказались эффективными для поражения крупных целей. Именно изобретение пороха стало основой возникновения настоящих ракет. Ракеты стали совершенствовать. Со временем разные учёные высчитывали, сколько надо пороха, чтоб запустить ракету на луну. А так как с древних времён человек мечтал оторваться от Земли и достичь иные миры, мы пришли к тому, что стали изобретать космическую ракету. Ещё 400 лет назад было доказано возможность полётов в космос, но до середины 20 века полёты в космос были только в умах учёных и писателей-фантастов. И только два конструктора С.Королёв и В.фон Браун сделали мечту реальностью.

В 1931 году была создана группа изучения реактивного движения, которую возглавил Сергей Павлович Королёв. Учёный сразу сосредоточил своё внимание на создании крылатых ракет. 17 августа 1933г. в небо поднялась ракета на гибридном топливе - «ГИРД-09», ракета поднялась свыше 400 метров, а спустя несколько месяцев стартовала первая ракета на жидкостном реактивном топливе «ГИРД-Х». Вскоре появились и были успешно испытаны два аппарата: РНИИ-212 и РНИИ-217. Изучение реактивного движения интересовало не только советских учёных. Похожие работы велись и в Германии. В 1933г. в Германии состоялся первый запуск ракеты немецкого учёного фон Брауна - А-1.

Конструкция этой ракеты оказалась нестабильной, что было учтено при создании новой ракеты: А-2. В конце 1934 года две ракеты этого типа успешно стартовали с полигона. Обе ракеты имели жидкостной реактивный двигатель (ЖРД). Уже в 1936 году была создана ракета А-3, тогда- то командование нацистской Германии и дало добро на развитие ракетной программы, и в следующем году начались испытания А-3. Ракета в отличие от своих предшественниц весила больше, и имела газовые рули, что позволяло запускать её со стартового стола вертикально. Однако испытания закончились неудачей, и фон Браун начал работу над А-5.

Проведя успешный запуск А-5, конструкторы перешли к работе над большой ракетой А-4, которая в ходе войны стала известна как «Фау-2». Ракета массой 13 тонн и высотой 14 метров поражала цели на расстоянии до 300 км, преодолевая его за 5 минут, позже ракета послужила моделью для всех послевоенных ракет. После капитуляции Германии немецкие учёные продолжили работу над совершенствованием ракетной техники. Фон Браун сдался американцам и стал одним из ведущих специалистов американской космической программы.

СССР и США начали гонку за обладание немецкими ракетными секретами. Американцы вместе с фон Брауном получили не только документацию, но и заводы, на которых изготавливалась «Фау-2». Однако через несколько месяцев эта территория отошла СССР, и туда сразу же прибыла группа учёных во главе с Королёвым. Перед ракетчиками была поставлена задача воспроизвести ракету А-4. В 1948г.

Королёв успешно провёл испытания ракеты Р-1 – слегка модернизированной копии «Фау-2». Позже в 1953 году перед конструкторами встала задача создать ракету, способную доставить отделяемую головную часть массой 5 тонн на расстояние до 8 тысяч км. С.П.Королёв решил отказаться от немецкого наследства, он должен был разработать совершенно новую ракету, которой ещё не было. Несмотря на то, что новый военный заказ был рассчитан на новый вид ядерного оружия, у Королёва появилась возможность создать такую ракету, которая могла вывести корабль в космос. Поскольку двигателя, который мог бы вывести такой груз на орбиту, не существовало даже в проектах, Королёв предложил революционную конструкцию ракеты. Она состояла из четырёх блоков первой ступени и одного блока- второй, соединенных параллельно. Такую систему назвали «связкой». Причём двигатели начинали работать с земли. 15 мая 1957года состоялся первый запуск новой ракеты, которая была названа Р-7. Удачность и как следствие надёжность конструкции и очень большая мощность для баллистической ракеты позволили использовать Р-7 в качестве ракеты-носителя. Именно ракеты-носители открыли человеку космическую эру.

Первые шаги в космосе

Королёв делал ракеты для военных, но мечтал начать с их помощью освоение космоса. Весной 1954 года он вместе с академиком М.В.Келдышем и группой учёных Академии наук определили круг задач, которые должны были решать искусственные спутники Земли. Королёв обратился к правительству с просьбой разрешить использовать новую ракету для запуска космического спутника. Хрущёв дал согласие, и в начале 1956 года было принято постановление о создание искусственного спутника Земли массой 1000-1400 кг с аппаратурой для научных исследований массой 200-300 кг. Учёные начали работу сразу над двумя спутниками. Первый так называемый «объект-Д» весил более 1,3 тонн и нёс на борту 12 научных приборов. Кроме того он был оснащён солнечными батареями, от которых питались радиопередатчик «Маяк» и магнитофон для записи телеметрии на тех участках орбиты, которые недоступны наземным станциям слежения. Правда, перед стартом он вышел из строя. Чтобы космический аппарат не перегревался на солнце, была разработана система терморегуляции газа внутри спутника. Кроме того, была придумана оригинальная система охлаждения. Таким образом, «объект-Д», который должен был открыть космическую эру, обладал всеми системами современных космических аппаратов. Это была полноценная космическая научная станция.

Второй спутник был биологическим. Он представлял собой головной обтекатель Р-7, внутри которого учёные разместили герметическую кабину для животного и контейнеры с научной и измерительной аппаратурой. Спутник имел массу более полутоны и должен был выйти на орбиту вслед за «объектом-Д». Цель его запуска бала довольно просто – доказать, что живое существо способно полететь в космос и остаться в живых.

Однако первым в космос полетел не нагруженный научной аппаратурой спутник, а небольшой металлический шарик, снабжённый простейшим радиопередатчиком. Этот аппарат так и назвали – «простейший спутник», или ПС. Металлический шар диаметром чуть больше полуметра, состоящий из двух полусфер, скрепленных 36 болтами, имел массу всего 83 кг.

На нём были установлены 4 антенны длиной 2,5 и 2,4 метра. Герметичный алюминиевый корпус был заполнен азотом, это должно было уберечь аппарат от перегрева. Так же внутри размещались два передатчика весом 3,5 кг и три батареи питания. Передаваемые им радиосигналы позволяли исследовать верхние слои ионосферы.

Простейший спутник был собран в рекордно короткие сроки. 15 февраля 1957 года было принято постановление о его создании, а 4 октября того же года он вышел на орбиту. Принимаемый всеми радиолюбителями сигнал «бип-бип» возвестил о начале новой космической эры. ПС-1 провёл на орбите 92 дня, а уже 4 ноября, ровно через месяц после запуска, в космос отправился ПС-2 с собакой Лайкой на борту. Первое живое существо должно было прожить орбите неделю, но аппарат перегрелся, и собака быстро погибла. Тем не менее главная цель была достигнута – Королёв доказал возможность полёта живого существа в космос.

Лайка стала первым живым существом, побывавшим в космосе, но далеко не первым животным, полетевшим в ракете. Учёные СССР и США использовали животных для исследования перегрузок во время полёта. Американцы предпочитали запускать обезьян, а мы собак, которых находили во дворах института авиационной медицины. Учёные приучили собак носить специальные одежды, есть из автоматической кормушки увлажненный корм, потому что лакать в невесомости невозможно. Собаки проходили тренировки, готовились к перегрузкам и катапультированию.

В том же году С.П. Королёв начал исследования по созданию пилотируемого корабля спутника. Ракетой-носителем должна была стать Р-7. Расчёты показали, что она способна вывести на околоземную орбиту груз массой более 5 тонн.

Тогда же бюро Королёва начало работу над космическим кораблём «Восток». Всего было создано три типа кораблей: прототип «Восток-1к», на котором были отработаны системы, «Восток-2к»-разведывательный спутник, и «Восток-3к», предназначенный для полётов человека в космос.

После окончания работ над будущим космическим кораблём «Восток» настало время испытаний. Первым, кто полетел на корабле-спутнике, был манекен, а следом за ним отправились собаки. 19 августа 1960 года в космос с космодрома Байконур был запущен корабль «Спутник-5», который был прототипом космического корабля «Восток». На корабле отправились собаки Белка и Стрелка.

Они провели на орбите около суток и благополучно вернулись на землю. В течение нескольких месяцев ещё были попытки запустить собак в космос, но все оказывались неудачными, собаки погибали. С. П. Королёв не мог отправить в космос человека до тех пор, пока не был уверен, что корабль надёжен и космонавт вернётся на Землю целым и невредимым, поэтому собачьи запуски продолжались. 9 марта 1961 года стартовал корабль «Спутник-9», который нёс на борту манекен, собаку Чернушку, мышь и морскую свинку. При возращении после входа в плотные слои атмосферы манекен успешно катапультировался, а животные приземлились в спускаемом аппарате.

Следующей в космос отправилась Звёздочка. 25 марта космический корабль с собакой и манекеном на борту вышел на орбиту, выполнил ряд испытаний и вернулся на землю. Безопасность космического корабля была доказана, и теперь Королёв со спокойным сердцем дал добро на полёт человека. Одноместный космический корабль «Восток» выводил на орбиту космонавта, который совершал полёт в скафандре. Система жизнеобеспечения была рассчитана на 10 суток полёта. После завершения программы исследований от корабля отделялся спускаемый аппарат, который доставлял космонавта на землю. На высоте 7 км космонавт катапультировался и приземлялся отдельно от спускаемого аппарата. Однако в экстренных случаях он мог и не покидать аппарат. Общая масса космического корабля достигала 4,73 тонны, длина (без антенн) 4,4м, а максимальный диаметр 2,43м. Отсеки механически соединялись между собой при помощи металлических лент и пиротехнических замков. Корабль оснащался системами: автоматического и ручного управления, автоматической ориентации на

Солнце, ручной ориентации на Землю, жизнеобеспечения, рассчитанной на поддержание внутренней атмосферы, близкой по своим параметрам к атмосфере Земли в течение 10 суток, командно-логического управления, электропитания, терморегулирования и приземления.

Вес космического корабля вместе с последней ступенью ракеты-носителя составлял 6,17 тонны, а их длина в связке 7,35 м. При разработке спускаемого аппарата конструкторами была выбрана асимметричная сферическая форма, как наиболее хорошо изученная и имеющая стабильные аэродинамические характеристики для всех диапазонов на разных скоростях движения. Это решение позволяло обеспечить приемлемую массу тепловой защиты аппарата и реализовать наиболее простую баллистическую схему спуска с орбиты.

В то же время выбор баллистической схемы спуска обуславливал высокие перегрузки, которые предстояло испытать человеку, работающему на борту корабля. Спускаемый аппарат имел два иллюминатора, один из которых размещался на входном люке, чуть выше головы космонавта, а другой, оснащённый специальной системой ориентации, в полу у его ног.

12 апреля 1961 года с космодрома Байконур стартовала ракета-носитель 8к78 с космическим кораблём «Восток». На борту корабля находился лётчик-космонавт Юрий Гагарин, которому первому предстояло преодолеть притяжение родной планеты и выйти на околоземную орбиту. «Восток» совершил один виток вокруг Земли, полёт длился 108 минут. Полёт корабля "Восток" с человеком на борту явился итогом напряженной работы советских ученых, инженеров, врачей и специалистов различных отраслей техники. 6 августа 1961 года был запущен корабль, получивший название "Восток-2", с лётчиком-космонавтом Г.С.Титовым. Полёт продолжался 25 ч. Орбитальный полёт и спуск прошли нормально. На корабле "Восток-2" была установлена профессиональная репортажная кинокамера, доработанная для бортовых съемок. С помощью этой камеры была выполнена 10-минутная съёмка Земли через иллюминаторы корабля.

Объекты съёмки выбирал сам космонавт, стремясь получить материал, иллюстрирующий картины, наблюдаемые им во время полёта. Полученная высококачественная съёмка широко демонстрировалась на телевизионном киноэкране, была опубликована в центральных газетах и вызвала интерес научной общественности к изучению изображений Земли из космоса. Следующим этапом стала программа «Восход» для выхода человека в космос. Для этого конструкция была изменена. Двухместный корабль «Восход-2» был оборудован надувной шлюзовой камерой, которая после использования отстреливалась. Снаружи камеры конструкторы установили кинокамеру, баллоны с запасом воздуха для надува, и запас кислорода. Для полёта был разработан специальный скафандр «Беркут». Скафандр имел многослойную герметичную оболочку, с помощью которой поддерживалось давление, а снаружи специальное покрытие, которое предохраняло от солнечных лучей. 18 марта 1965 года «Восход-2» стартовал с космонавтами Беляевым и Леоновым. Спустя полтора часа после начала полёта Леонов открыл наружный люк и вышел в открытый космос.

Запуски космических кораблей положили новую эпоху в освоение космоса. В 1962 году конструкторы начали проектировать корабль «Союз», для облёта Луны. Одновременно с советскими учёными космическое агентство США начало разработку лунной программы, они хотели первыми освоить поверхность луны. Были созданы луноходы, для изучения поверхности Луны. Новые ракеты-носители, и космические корабли, например «Аполлон», созданный учёными НАСА, для доставки астронавтов на поверхность Луны. 16 июля 1969 года стартовал Аполлон-11. Лунный модуль прилунился. Нил Армстронг спустился на поверхность Луны 21 июля 1969 года, совершив первую в истории человечества высадку на Луну. Космические корабли не могли обеспечить длительное пребывание на орбите, поэтому учёные стали думать над созданием орбитальной станции. В 1971 году с помощью ракеты-носителя «Протон» на орбиту вывели орбитальную станцию «Салют». Спустя 2 года США запустили станцию «Скайлэб».

Орбитальные станции (ОС) были предназначены для долговременного пребывания людей на околоземной орбите, для проведения научных исследований в условиях космического пространства, наблюдений за поверхностью и атмосферой планеты. От искусственных спутников ОС отличалась наличием экипажа, который периодически сменялся с помощью транспортных кораблей. На кораблях доставляли смену экипажа, запасы топлива и материалы для станции, и ещё средства жизнеобеспечения экипажа. Длительность пребывания на орбитальной станции зависела от того, возможно ли её вовремя дозаправить и ремонтировать. Поэтому при разработке орбитальной станции третьего поколения «Салют» было принято решение о создании на базе пилотируемого корабля «Союз» грузового корабля, получившего позже название «Прогресс». При проектировании были использованы бортовые системы, конструкции корабля «Союз». «Прогресс» имел три основных отсека: герметичный грузовой со стыковочным агрегатом, где размещались материалы и оборудование, доставляемые на станцию, отсек дозаправки, и приборно-агрегатный.

В 1979 году советские конструкторы приступили к работе над новым типом долговременных орбитальных станций. Над "Миром" работали 280 организаций. Базовый блок был выведен на орбиту 20 февраля 1986 года. Затем в течение 10 лет один за другим были пристыкованы ещё шесть модулей. С 1995 года станцию стали посещать иностранные экипажи. Также на станции побывало 15 экспедиций, из них 14 международных.

Станция провела 5511 день на орбите. В конце 1990-х годов на станции начались многочисленные проблемы из-за постоянного выхода из строя различных приборов и систем. Через некоторое время было принято решение затопить «Мир». 23 марта 2001 года проработавшая в три раза дольше срока станция была затоплена в Тихом океане. В том же 1979 году американские конструкторы построили первый Шаттл, космический челнок, многоразовый транспортный космический корабль. Шаттл запускается в космос, осуществляет манёвры на орбите как космический корабль и возвращается на Землю как самолёт. Подразумевалось, что Шаттлы будут сновать, как челноки, между околоземной орбитой и Землёй, доставляя полезные грузы в обоих направлениях. Корабли стали использоваться для вывода грузов на орбиту высотой 200-500 км, проведения исследований, обслуживания орбитальных космических станций.

Ракета пока является единственным транспортным средством, способным вывести космический аппарат в космос. И тогда автором первой космической ракеты можно признать К. Циолковского, хотя истоки возникновения ракет относятся к далекому прошлому. Оттуда и начнем рассматривать наш вопрос.

История изобретения ракеты

Большинство историков считает, что изобретение ракеты относится ко временам китайской династии Хань (206 год до н. э.-220 н. э.), к открытию пороха и началу его использования для фейерверков и развлечений. При взрыве порохового снаряда возникала сила, которая могла двигать различные предметы. Позже по этому принципу были созданы первые пушки и мушкеты. Снаряды порохового оружия могли летать на далёкие расстояния, однако не были ракетами, поскольку не имели собственных запасов топлива, но именно изобретение пороха стало основной предпосылкой возникновения настоящих ракет. Описание летающих «огненных стрел», применявшихся китайцами, показывает, что эти стрелы были ракетами. К ним прикреплялась трубка из уплотненной бумаги, открытая только с заднего конца и заполненная горючим составом. Этот заряд поджигался, и затем стрела выпускалась с помощью лука. Такие стрелы применялись в ряде случаев при осаде укреплений, против судов, кавалерии.

В XIII веке вместе с монгольскими завоевателями ракеты попали в Европу. Известно, что ракеты применялись запорожскими казаками в XVI-XVII вв. В XVII веке литовский военный инженер Казимир Семенович описал многоступенчатую ракету.

В конце XVIII века в Индии ракетное оружие применялось в сражениях с британскими войсками.

В начале XIX века армия также приняла на вооружение боевые ракеты, производство которых наладил Уильям Конгрив (Ракета Конгрива) . В то же время российский офицер Александр Засядко разрабатывал теорию ракет. Большого успеха в совершенствовании ракет достиг в середине позапрошлого века российский генерал артиллерии Константин Константинов . Попытки математически объяснить реактивное движение и создать более эффективное ракетное вооружение делал в России Николай Тихомиров в 1894 году.

Теорию реактивного движения создал Константин Циолковский . Он выдвигал идею использования ракет для космических полетов и утверждал, что наиболее эффективным топливом для них было бы сочетание жидких кислорода и водорода. Ракету для межпланетных сообщении он спроектировал в 1903 г.

Немецкий учёный Герман Оберт в 1920-е годы также изложил принципы межпланетного полёта. Кроме того, он проводил стендовые испытания ракетных двигателей.

Американский учёный Роберт Годдард в 1926 г. осуществил запуск первой жидкостной ракеты, в качестве топлива для которой использовались бензин и жидкий кислород.

Первая отечественная ракета называлась ГИРД-90 (аббревиатура «Группы изучения реактивного движения»). Ее начали строить в 1931 году, а испытали 17 августа 1933 года. ГИРДом в то время руководил С.П. Королев. Ракета взлетела на 400 метров и находилась в полете 18 секунд. Вес ракеты на старте был 18 килограммов.

В 1933 г. в СССР в Реактивном институте было завершено создание принципиально нового оружия - реактивных снарядов, установка для запуска которых позднее получила прозвище «Катюша» .

В ракетном центре в Пенемюнде (Германия) была разработана баллистическая ракета А-4 с дальностью полёта 320 км. Во время Второй мировой войны 3 октября 1942 г. состоялся первый успешный запуск этой ракеты, а в 1944 г. началось её боевое применение под названием V-2.

Военное применение V-2 показало огромные возможности ракетной техники, и наиболее мощные послевоенные державы - США и СССР - также начали разработку баллистических ракет.

В 1957 г. в СССР под руководством Сергея Королёва как средство доставки ядерного оружия была создана первая в мире межконтинентальная баллистическая ракета Р-7, которая в том же году была использована для запуска первого в мире искусственного спутника Земли. Так началось применение ракет для космических полётов.

Проект Н. Кибальчича

В связи с этим невозможно не вспомнить Николая Кибальчича, русского революционера, народовольца, изобретателя. Он был участником покушений на Александра II , именно он изобрел и изготовил метательные снаряды с «гремучим студнем», которые были использованы И.И. Гриневицким и Н. И. Рысаковым во время покушения на Екатерининском канале. Приговорён к смертной казни.

Повешен вместе с А.И. Желябовым, С.Л. Перовской и другими первомартовцами. Кибальчич выдвинул идею ракетного летательного аппарата с качающейся камерой сгорания для управления вектором тяги. За несколько дней до казни Кибальчич разработал оригинальный проект летательного аппарата, способного совершать космические перелёты. В проекте было описано устройство порохового ракетного двигателя, управление полетом путем изменения угла наклона двигателя, программный режим горения и многое другое. Его просьба о передаче рукописи в Академию наук следственной комиссией удовлетворена не была, проект был впервые опубликован лишь в 1918 г.

Современные ракетные двигатели

Большинство современных ракет оснащаются химическими ракетными двигателями. Такой двигатель может использовать твёрдое, жидкое или гибридное ракетное топливо. Химическая реакция между топливом и окислителем начинается в камере сгорания, получающиеся в результате горячие газы образуют истекающую реактивную струю, ускоряются в реактивном сопле (или соплах) и выбрасываются из ракеты. Ускорение этих газов в двигателе создаёт тягу - толкающую силу, заставляющую ракету двигаться. Принцип реактивного движения описывается третьим законом Ньютона.

Но не всегда для движения ракет используются химические реакции. Существуют паровые ракеты, в них перенагретая вода, вытекающая через сопло, превращается в высокоскоростную паровую струю, которая служит движителем. Эффективность паровых ракет относительно низка, однако это окупается их простотой и безопасностью, а также дешевизной и доступностью воды. Работа небольшой паровой ракеты в 2004 году была проверена в космосе на борту спутника UK-DMC. Существуют проекты использования паровых ракет для межпланетной транспортировки грузов, с нагревом воды за счёт ядерной или солнечной энергии.

Ракеты наподобие паровой, в которых нагрев рабочего тела происходит вне рабочей зоны двигателя, иногда описывают как системы с двигателями внешнего сгорания. Примерами ракетных двигателей внешнего сгорания может служить большинство конструкций ядерных ракетных двигателей.

Сейчас разрабатываются альтернативные способы поднимать космические аппараты на орбиту. Среди них «космический лифт», электромагнитные и обычные пушки, но пока они находятся на стадии проектирования.

В битве за Кайкен в 1232 г. китайцы обрушили «огненные стрелы», которые представляли собой наполненные порохом трубочки, на монголо-татарское войско. После битвы за Кайкен монголы начали производить свои ракеты и послужили распространению первых ракетных технологий в Европе. С 13 по 15 столетия поступали сообщения о различных экспериментах с ракетами. В Англии монах по имени Роджер Бэкон работал над новой формулой пороха, которая позволила увеличить дальность полета ракетных снарядов. Во Франции Жан Фруассар обнаружил, что полет снаряда может получиться более точным, если ракету запускать через трубу. Идея Фруассара через несколько столетий дала толчок к созданию противотанковых ракетных снарядов вроде базуки. В Италии Джан де Фонтана разработал ракетный снаряд в виде торпеды, который двигался на поверхности воды, для поджигания вражеских кораблей.

Однако, новатором ракетных технологий в их современном можно назвать индийского принца Хайдар Али, который правил в царстве Майсор (или Карнатака), на юге Индии. В ходе войн между Майсором и британской Восточно-Индийской торговой компанией Хайдар Али применил ракеты и ракетные полки в виде регулярных войск. Главным технологическим новшеством стало применение оболочки из высококачественного металла, в которую помещался заряд пороха (так появилась первая камера сгорания). Хайдар Али также создал специальные обученные отряды ракетчиков, которые могли наводить ракеты на отдаленные цели с приемлемой точностью. Использование ракет в англо-майсорских войнах навело англичан на мысль о применении этого вида оружия. Уильям Конгрив, офицер британских войск, которые заполучили в трофей несколько индийских ракет, отправил эти снаряды в Англию для последующего изучения и разработки. В 1804 г. Конгрив, сын начальника королевского арсенала в Вулвиче, под Лондоном, занялся разработкой ракетной программы и массовым производством реактивных снарядов. Конгрив изготовил новую горючую смесь и разработал ракетный двигатель и металлическую трубу с конусообразным наконечником. Эти ракеты, весившие 15 кг, получили название «Ракеты Конгрива».

Англичане применили новое оружие в войнах против Наполеона. При осаде Булони в 1805 г. они обрушили на этот город две тысячи снарядов, а в сентябре следующего года столица Дании Копенгаген был сожжен с помощью 14 тысяч различных снарядов (ракет, бомб и гранат), из которых 300 были «ракеты Конгрива».

Современная ракетная техника обязана своим развитием главным образом трудам и исследованиям трех выдающихся ученых: поляка из России Константина Циолковского, немца Германа Оберта и американца Роберта Годдарда. Хотя эти подвижники работали независимо друг от друга и их идеи в то время часто игнорировались, они заложили теоретические и практические основы ракетной техники и космонавтики

Константин Эдуардович Циолковский, школьный учитель, происходивший из обедневшего польского дворянского рода, впервые написал о жидкостных ракетах и искусственных спутниках в 1883 и 1885. В своей работе Исследования мировых пространств реактивными приборами (1903) он изложил принципы межпланетных полетов. Циолковский утверждал, что наиболее эффективным топливом для ракет было бы сочетание жидких кислорода и водорода (хотя даже лабораторные количества этих веществ в то время были весьма дорогостоящими), и предложил использовать связку небольших двигателей вместо одного большого. Он также предложил использовать многоступенчатые ракеты вместо одной большой для облегчения межпланетных перелетов. Циолковский разработал основные идеи систем жизнеобеспечения экипажа и некоторые другие аспекты космических путешествий.

Герман Оберт, немецкий физик и инженер, живший в румынской Трансильвании (тогда части Австро-Венгерской империи) в своих книгах Ракета в межпланетное пространство (Die Rakete zu den Planetenraumen, 1923) и Пути осуществления космических полетов (Wege zur Raumschiffahrt, 1929) изложил принципы межпланетного полета и выполнил предварительные расчеты массы и энергии, необходимые для полетов к планетам. Его сильной стороной была математическая теория, но в практической деятельности он не продвинулся дальше стендовых испытаний ракетных двигателей.

Разрыв между теорией и практикой заполнил американец Роберт Хатчинс Годдард. Еще юношей он был захвачен идеей межпланетного полета. Его первое исследование относилось к области твердотопливных ракет, в которой он получил свой первый патент в 1914. К концу Первой мировой войны Годдард далеко продвинулся в создании ракет со ствольным запуском, которые не были использованы армией США в связи с наступлением мира; во время Второй мировой войны, однако, его разработки привели к созданию легендарной базуки, первой эффективной противотанковой ракеты. Смитсоновский институт в 1917 предоставил Годдарду исследовательский грант, результатом которого стала его классическая монография Метод достижения экстремальных высот (A Method of Reaching Extreme Altitudes, 1919). Годдард начал работу над ЖРД в 1923, а работающий прототип был создан к концу 1925. В 1926 осуществил первый в мире запуск ракеты с ЖРД (жидким кислородом и газолином). Эти работы Годдарда стимулировали ракетные исследования в Германии в 1930-х годах и стали основой современной ракетной техники. В 1935 его ракета с ЖРД достигла сверхзвуковой скорости, затем была создана ракета, поднявшаяся на высоту 1,6 км. Годдарду принадлежит более 200 патентов, в том числе по жидкостным ракетным двигателям, гироскопической стабилизации, многоступенчатым ракетам, достигающим сверхзвуковой скорости и т.д. Значительная часть патентов была оформлена уже после смерти ученого по архивным материалам, и в 1960 правительство США приняло решение о выплате 1 млн. долл. его наследникам в качестве компенсации за использование результатов работ Годдарда в области ракетной техники. Умер Годдард в Балтиморе (шт. Мэриленд) 10 августа 1945 г. (Спустя день после окончания Второй мировой войны). Во войны Годдард также работал над стартовыми ускорителями для морской авиации.

Работы Циолковского, Оберта и Годдарда были продолжены группами энтузиастов ракетной техники в США, СССР, Германии и Великобритании. В СССР исследовательские работы вели Группа изучения реактивного движения (Москва) и Газодинамическая лаборатория (Ленинград). Члены Британского межпланетного общества, ограниченные в своих испытаниях британским законом о фейерверках, идущим от Порохового заговора (1605) с целью взорвать парламент, сосредоточили усилия на разработке «пилотируемого лунного космического корабля», основываясь на доступных для того времени технологиях.

Немецкое Общество межпланетных сообщений VfR в 1930 смогло создать примитивную установку в Берлине, и 14 марта 1931 член VfR Йоханнес Винклер осуществил первый в Европе удачный запуск жидкостной ракеты.

Среди членов VfR был и Вернер фон Браун (1912–1997), молодой аристократ, докторант Берлинского университета, который с декабря 1932 начал работать над диссертацией по ЖРД на артиллерийском полигоне немецкой армии в Куммерсдорфе. При плохом техническом оснащении фон Браун за один месяц создал двигатель тягой 1300 Н и начал работу над созданием двигателя с тягой 3000 Н, который был использован на экспериментальной ракете А-2, успешно запущенной с острова Боркум в Северном море 19 декабря 1934.

Немецкая армия рассматривала ракеты как оружие, которое она может использовать, не опасаясь международных санкций, поскольку в Версальском договоре, который подвел итоги Первой мировой войны, и последующих военных договорах о ракетах не упоминалось. После прихода Гитлера к власти военному ведомству Германии были выделены дополнительные средства на разработку ракетного оружия, и весной 1936 была одобрена программа строительства ракетного центра в Пенемюнде (фон Браун был назначен его техническим директором) на северной оконечности острова Узедом у балтийского побережья Германии.

Следующая ракета – А-3 имела двигатель тягой 15 кН с системой наддува на жидком азоте и парогенератором, гироскопическую систему управления и наведения, систему контроля параметров полета, электромагнитные сервоклапаны для подачи компонентов топлива и газовые рули. Хотя все четыре ракеты А-3 взорвались на старте или вскоре после старта с полигона в Пенемюнде в декабре 1937, технический опыт, полученный при проведении этих запусков, был использован при разработке двигателя тягой 250 кН для ракеты А-4, первый успешный запуск которой состоялся 3 октября 1942.

После двух лет конструкторских испытаний, подготовки производства и обучения войск ракета А-4, переименованная Гитлером в Фау-2 («Оружие возмездия-2»), была развернута начиная с сентября 1944 против целей в Англии, Франции и Бельгии.

3 мая 1945 главный конструктор ракеты V-2 (Фау-2) фон Браун и большинство его сотрудников сдались в плен оккупационным властям США. По прибытии в США фон Браун возглавил службу проектирования и разработки вооружения армии США, затем руководил отделом управляемых ракет армейского арсенала «Редстоун» в Хантсвилле (шт. Алабама). В 1960 стал одним из руководителей НАСА и первым директором Центра космических полетов им. Маршалла в Хантсвилле. Под его руководством была разработана ракета-носитель серии «Сатурн» для пилотируемых полетов на Луну, искусственные спутники Земли серии «Эксплорер» и космический корабль «Аполлон». Впоследствии фон Браун занял пост вице-президента фирмы Faichild Space Industries в Джермантауне (шт. Мэриленд), который оставил незадолго до своей смерти. Умер Браун в Александрии (шт. Виргиния) 16 июня 1977.

Истории советского ракетостроения почти сто лет. Этапы тернистого пути науки в полной мере отражают все катаклизмы и гримасы советской истории.


Однако ничто не смогло помешать выдающимся российским советским ученым за короткий срок вывести СССР на лидирующие позиции по ракетостроению.


Доктор технических наук, профессор, лауреат Государственной премии СССР Юрий Григорьев восстанавливает картину побед и поражений отечественного ракетостроения.



К концу войны в Красной Армии было свыше 500 дивизионов реактивной артиллерии.

Спасительные «Катюши»

Русская «Катюша», появление которой знаменовало подведение итогов определенного этапа развития ракетостроения в России, была продемонстрирована за несколько дней до начала Великой Отечественной войны (15 - 17 июня 1941 года) на смотре образцов вооружения Красной Армии.

К концу войны в Красной Армии было свыше 500 дивизионов реактивной артиллерии. Всем очевиден тот факт, что «Катюшам» принадлежит значительная роль в победе над гитлеровской Германией.

Путь, проделанный русскими учеными от первых реактивных двигателей до экспериментальных боевых машин БМ-13, оказался нелегким, составив без малого двадцать лет.


Тихомиров Николай Иванович (1860 - 1930) . В 1921 году по его предложению началось создание реактивной артиллерии на качественно новой энергетической основе - бездымном порохе. Впервые решил задачу устойчивого горения пироксилинового пороха в ракетной камере. Развернул на этой основе опытно-конструкторские работы, организовал Газодинамическую лабораторию (ГДЛ).

Зарождение отечественного ракетостроения связывают с созданием в 1921 году в Москве научно-исследовательской и опытно-конструкторской лаборатории по разработке ракетных двигателей и ракет, которую возглавил инженер Н.И. Тихомиров.


Лангемак Георгий Эрихович (1898-1938) . Основоположник исследований по конструированию реактивных снарядов на бездымном порохе, начатых им в 1928 году. Возглавлял создание реактивной артиллерии как научный руководитель проблемы и главный инженер института. Завершил исследования, обеспечившие повышение характеристик реактивных снарядов до уровня, с которым они были приняты на вооружение наземных войск.

С 1928 года эта лаборатория стала называться Газодинамической Лабораторией (ГДЛ). В ней начинал свои работы по конструированию реактивных снарядов на бездымном порохе Г.Э. Лангемак.


Петропавловский Борис Сергеевич (1898-1933). Возглавлял в 1930-1933 годах разработку в ГДЛ реактивных снарядов и пусковых установок. Довел опытно-конструкторские работы до первых официальных испытаний опытных образцов на земле и в воздухе. Способствовал созданию Реактивного научно-исследовательского института.

После смерти Тихомирова в 1930 году начальником ГДЛ назначают инженера Б.С. Петропавловского, возглавившего разработку реактивных снарядов и пусковых установок. ГДЛ перевели в Ленинград и разместили в здании Главного Адмиралтейства в Петропавловской крепости.



Иоанновский равелин Петропавловской крепости. Здесь расположилась ГДЛ



Петропавловский Борис Сергеевич с сотрудниками ГДЛ

В 1931 году в Москве появляется Московская группа изучения реактивного движения (ГИРД), начавшая в 1932 году работы по проектированию авиационного жидкостно-реактивного двигателя ОР-2, ракетоплана РП-1 и баллистической ракеты, которая 17 августа 1933 года поднялась на высоту 400 м, а после модификации - на 1500 м.



За работой. Справа стоит Ф. А. Цандер



Ракеты, разработанные в СССР в группе ГИРД (Группа Исследования Реактивного Движения)

Чуть позже в Москве на базе ленинградской ГДЛ и московского ГИРД 21 сентября 1933 года создают Реактивный научно-исследовательский институт (РНИИ). Начальником РНИИ назначили И.Т. Клейменова, его замeститeлeм стал Г.Э. Лангемак.

В ТС института входили:

В Технический Совет института вошли: Г.Э. Лангемак (председатель), В.П. Глушко, В.И. Дудаков, С.П. Королев, Ю.А. Победоносцев и М.К. Тихонравов.

Позднее эта организация стала называться Научно - Исследовательский Институт Тепловых Процессов (НИИТП). Нынче это ГНЦ ФГУП «Центр Келдыша».



Была спроектирована крылатая управляемая ракета с двигателем ОРМ-65

Группой С.П. Королева была спроектирована крылатая управляемая ракета 301 с двигателем В.П. Глушко ОРМ-65, которая предназначалась для пуска с тяжелого бомбардировщика ТБ-3 на дальность до 10 км.

Она имела размах крыльев 2,2 м, длину 3,2 м и стартовый вес 200 кг. Проводились летные испытания этой ракеты. Был также создан планер РП-318-1, снабженный реактивным двигателем.



Был построен планер РП-318-1, снабженный реактивным двигателем

В декабре 1937 года в СССР на вооружение были приняты реактивные снаряды ("Эрэсы") подвешиваемые под крылом самолета. Они устанавливались на истребителях И-15, И-16, И-153 и бомбардировщиках СБ, успешно применялись на Халхин-Голе, позднее в Великую Отечественную войну устанавливались на истребителях Яковлева и Лавочкина, штурмовиках Ильюшина и других самолетах.



"Эрэсы" подвешиваемые под крылом самолета. Они устанавливались на истребителях И-15, И-16, И-153

Но вернемся в судьбоносный для ракетостроения июнь 1941 года, когда «Катюша» была официально представлена первым руководителям страны Советов.

Присутствовавшие на смотре образцов вооружения Красной Армии Нарком обороны С.К. Тимошенко, Начальник Генштаба Г.К. Жуков, Нарком вооружений Д.Ф. Устинов, Нарком боеприпасов Б.Л. Ванников дали высокую оценку новому ракетному оружию.


Пусковая установка БМ-13 - легендарная "Катюша"

Решение же о развертывании серийного производства реактивных снарядов М-13 и пусковой установки БМ-13, было принято 21 июня 1941 года буквально за несколько часов до начала войны!

Части, вооруженные такими реактивными установками, назывались гвардейскими минометными частями. Попытки немцев противопоставить "Катюше" пяти-, шести- и десятиствольный миномет оказались неэффективными.

Арест органами НКВД С.П. Королева и В.П. Глушко

Бутырская тюрьма в которую поместили С.П. Королева и В.П. Глушко



Фото В.П. Глушко из личного дела НКВД



Фото С.П. Королева из личного дела НКВД



С.П. Королев и В.П. Глушко встретились только в 1942 году в Казани

Другие направления работ в области ракетостроения в СССР во время войны не развивались. Конечно, когда началась война, и враг оказался на подступах к Москве и Ленинграду, разрабатывать баллистические ракеты дальнего действия было бессмысленно. Но была и другая причина: репрессии в предвоенные годы.

В 1937 году в период нахождения Н.И.Ежова на посту Наркома внутренних дел один из сотрудников РНИИ написал клеветнический донос, в котором назвал вредителями группу своих коллег. Все перечисленные им «вредители» были арестованы. И.Т. Клейменов и Г.Э. Лангемак вскоре были расстреляны, а В.П. Глушко и С.П. Королев получили по 8 лет лагерей.

В конце 1938 года, когда Ежов был освобожден от занимаемой должности (расстрелян в 1940 г), его место занял Л.П.Берия, который 10 января 1939 года подписал приказ об организации в структуре НКВД особых технических бюро, предназначенных для использования заключенных, имеющих специальные технические знания. В народе их называли «шарашками».

В одной из таких «шарашек» и работали В.П. Глушко и С.П. Королев. Сняли судимость и досрочно освободили их только в июле 1944 года, а реабилитировали в 1956 году.



Главные конструкторы: А.Ф.Богомолов, М.С.Рязанский, Н.А.Пилюгин, С.П.Королёв, В.П.Глушко, В.П.Бармин,В.И.Кузнецов. Космодром Байконур. 1957

Немецкие проекты не пригодились

С немецкими ракетами советские специалисты впервые познакомились ещё во время войны в 1944 году, когда наступающая Красная Армия заняла территорию немецкого ракетного полигона в Польше. Туда прибыли советские инженеры, которым удалось найти сохранившуюся камеру сгорания, куски топливных баков, детали корпуса ракеты и многое другое.

Все собранные находки были привезены в Москву, их изучением занялись специалисты. После капитуляции Германии в советскую зону оккупации было направлено много советских инженеров — специалистов в разных видах техники и технологий - среди них В.Ф.Болховитинов, А.М.Исаев, Б.Е.Черток, В.И.Кузнецов, В.П.Бармин, В.П.Мишин, Н.А.Пилюгин, С.П.Королев, В.П.Глушко. В



Все члены будующего совета главных гонструкторов были командированы в германию для изучения немецкой ракетной техники

Пенемюнде они увидели не только Фау-2, но и ряд малых ракет: "Рейнтохтер", "Рейнботе", "Вассерфаль", "Тайфун". Другой немецкий ракетный центр - Нордхаузен, подземный завод, где работали узники концлагерей, тоже находился в советской зоне оккупации, но был захвачен американскими войсками. В июле 1945 года американцы вывели войска из Нордхаузена, но вывезли оттуда все, что смогли. На следующий же день там появились советские специалисты.

Некоторое время спустя в Германии был создан "Институт Рабе" - организация по изучению немецкой ракетной техники, который находился в Бляйхероде - маленьком городке в глубине советской зоны оккупации. Работали там, в основном, немцы - бывшие участники немецкой ракетной программы, однако, как правило, они не были ведущими специалистами, поскольку основные специалисты немецкого ракетного проекта во главе с Брауном были вывезены в США. Из крупных немецких специалистов остался только Гельмут Греттруп, который в Пенемюнде руководил разработками систем управления для ракет.



Гельмут ГРЕТТРУП немецкий инженер-ракетчик, специалист по системам управления, заместитель доктора Штейнхофа (руководителя группы управления баллистических и управляемых ракет в Пенемюнде)

Осенью 1945 г. был создан более крупный институт «Нордхаузен», в состав которого вошел и институт «Рабе». Начальником института «Нордхаузен» стал Л.М. Гайдуков, а его заместителем и главным инженером — С. П. Королев. Для восстановления всей документации, необходимой для производства ракет, в городе Зоммерде, близ Эрфурта, было образовано совместное советско-немецкое ОКБ.

Изучался самолет-снаряд Фау-1




Восстановлением наземного оборудования занимался институт «Берлин», главным инженером которого был назначен В.П. Бармин. Общий размах работ был настолько большим, что пришлось размещать заказы по всей советской оккупационной зоне Германии на сохранившихся заводах.

Советские заказы выполнялись охотно, поскольку за них расплачивались самым дорогим по тому времени — продовольственными пайками. В 1946 году было решено организовать перевод немецких специалистов из Германии в СССР. Для осуществления этой операции, которой руководил генерал-полковник И.А.Серов, было привлечено до 2500 солдат и сотрудников контрразведки.

Ранним утром 22 октября 1946 г. к домам, где жили немецкие специалисты, подъехали армейские грузовики. Сотрудник МВД, сопровождаемый переводчиком и группой солдат, будил обитателей дома, зачитывал им приказ об их немедленной отправке в СССР для продолжения работы, просил взять с собой членов семьи и любые вещи, которые они хотели вывезти. Приказано было также разрешить ехать в СССР любой женщине, которую немецкий специалист захочет взять с собой, даже если это не жена. Применять физическое насилие категорически запрещалось.

Предписывалось брать все вещи, которые немцы пожелают, вывозили даже рояли. Жена одного немецкого специалиста категорически отказывалась уезжать, потому что у нее были две коровы, которые обеспечивали молоком ее детей. Спорить с нею не стали, погрузили и коров.

Семьи и багаж грузились на автомобили и следовали на вокзалы, где их ждали готовые к отправке железнодорожные составы. Когда в Нордхаузен прибыли железнодорожные поезда с пассажирами и товарными вагонами, русские и немцы собрались в ресторане на банкет, который продлился до часу ночи. А утром началась эвакуация. В СССР прибыло более 200 немецких специалистов по ракетной технике, а вместе с семьями около 500 человек.

Среди них насчитывалось 13 профессоров, 32 доктора-инженера, 85 дипломированных инженеров и 21 инженер-практик. Из Германии с СССР ушел также состав, в котором находилось специальное оборудование и несколько собранных ракет Фау-2.

Изучение немецкой ракеты Фау-2




Приехавших немецких ученых и инженеров разместили на острове Городомля (озеро Селигер) в жилом городке крупного научно-исследовательского института, перебазированного в другое место. Питание было хорошим. Платили немцам от 4 до 6 тыс. рублей в месяц, советские конструкторы такого же ранга получали меньше. По выходным дням немцев периодически вывозили в Москву, в театры и музеи.

В сентябре 1947 г. советские и немецкие специалисты-ракетчики выехали на Государственный центральный полигон, расположенный в междуречье Волги и Ахтубы рядом с посёлком Капустин Яр. Ехали в специальном поезде-лаборатории, который был сформирован ещё в Германии.

Жилые вагоны обеспечивали хорошие условия для работы и отдыха. Возникавшие проблемы обсуждались на заседаниях Государственной комиссии, в состав которой входили Д.Ф.Устинов, И.А.Серов и другие ответственные лица, а председателем был маршал артиллерии Н.Д.Яковлев.

Первый пуск ракеты Фау-2 состоялся 18 октября 1947 г. в 10 часов 47 мин. Ракета пролетела 207 км и, отклонясь на 30 км от курса, разрушилась в плотных слоях атмосферы. Вторая ракета пролетела 231 км, но отклонилась на 180 км. Немецкие ученые и их помощники получили премии — по 25 тыс. рублей каждый. По тем времени это были большие деньги.

Работавшим на Городомле немецким специалистам поручили сконструировать более мощную ракету «Г-1», главным конструктором которой назначили Гельмута Греттрупа. Работа над этим проектом продолжалась несколько лет, но реализован он не был. Следующей разработкой немецких специалистов была ракета "Г-2", способная доставлять боеголовку весом в одну тонну на расстояние свыше 2500 км.

Было рассмотрено около десятка вариантов компоновки ракеты, но реализован этот проект тоже не был. Затем немецким специалистам поручили разработку ещё более мощной ракеты "Г-4" с дальностью стрельбы 3000 км и боевой нагрузкой в 3 тонны, однако реализован этот проект также не был. Последней разработкой группы Греттрупа стал проект "Г-5", но он не был доведен до завершения.

Немецкие специалисты работали изолированно, никто из них не получал советского гражданства, не допускался к нашим конкретным разработкам и не занимал никаких крупных постов. Разработанные ими материалы изучались нашими специалистами, при необходимости заимствовались некоторые конструкторские, технологические или методические решения, но ни один из проектов, разработанных немцами, в дальнейшую разработку не пошёл.

Когда интерес к немецким идеям у главных советских конструкторов иссяк, они обратились в Правительство с предложением отпустить немцев домой, что и было сделано. В октябре 1950 года немецкие специалисты были возвращены в Германию. Г. Греттруп покинул СССР позднее, в конце 1953 года.

На перроне вокзала в Берлине агенты американской разведки усадили его в свою машину и вывезли в Западную Германию, где его допрашивали, потом предложили руководящую работу в Штатах у его друга фон Брауна, но Г. Греттруп отказался. Американские спецслужбы, обозлённые его отказом, долго не давали ему устроиться на работу.

Государственное мышление на службе ракетостроения

И.В. Сталин

Началом создания ракетной промышленности СССР по праву считается 1946 г., когда наркоматы были переименованы в министерства, а 13 мая 1946 года И.В.Сталин подписал «Постановление Совета Министров СССР №1017-419. Сов.секретно (особая папка). Вопросы реактивного вооружения».

Этим Постановлением был создан Специальный Комитет по реактивной технике при Совете Министров СССР. Председателем Комитета был назначен Г.М.Маленков, его заместителем Д.Ф.Устинов - министр вооружений СССР. В Постановлении были:

  • сформулированы основные функции Комитета
  • определены головные министерства и ведомства по разработке и производству реактивного вооружения
  • создана новая структура управлений в этих министерствах
  • назначены ответственные руководители по всем направлениям работ
  • созданы новые научно-исследовательские институты
  • решены финансовые вопросы
  • а также предусмотрена подготовка и переподготовка студентов ряда высших учебных заведений по специальностям ракетостроения

В п.32. Постановления было сказано: «Считать работы по развитию реактивной техники важнейшей государственной задачей и обязать все министерства и ведомства и организации выполнять задания по реактивной технике как внеочередные».

Затем начали создаваться КБ и НИИ. В Министерстве вооружений в Подлипках (ныне г. Королев) создается Государственный союзный головной научно-исследовательский институт №88 (НИИ-88). главным конструктором баллистической ракеты дальнего действия (изделия №1) 9 августа 1946 года Д.Ф.Устинов назначил С.П. Королёва.

Позднее на базе ряда подразделений НИИ-88 и опытного завода было создано ОКБ-1, директором и главным конструктором которого стал также С.П.Королев. Были также созданы:

  • В Министерстве авиационной промышленности - Конструкторское бюро по ракетным двигателям (гл. конструктор В.П.Глушко)
  • В Министерстве промышленности средств связи - НИИ по разработке аппаратуры и радиосвязи для ракет (гл. конструктор М.С. Рязанский)
  • В Министерстве судостроительной промышленности - Институт по гироскопам (гл. конструктор В.И. Кузнецов)
  • В Министерстве машиностроения и приборостроения - Конструкторское бюро по разработке стартовых комплексов (гл. конструктор В.П. Бармин)

Главными конструкторами КБ, созданных при министерствах стали:

Позднее были созданы специализированные конструкторские бюро:

  • в Москве (гл. конструктор А.Д. Надирадзе)
  • в Реутове Московской области (гл.конструктор В.Н.Челомей)
  • в Красноярске (гл.конструктор М.Ф. Решетнев)
  • в Златоусте (гл. конструктор В.П.Макеев)
  • в Куйбышеве (гл. конструктор Д.И.Козлов)
  • в Днепропетровске (гл. конструктор М.К.Янгель)

Главными конструкторами специализированных КБ стали
Министром общего машиностроения был назначен Сергей Александрович Афанасьев

В 1965 году было образовано Министерство общего машиностроения, которое объединило практически всю ракетно-космическую промышленность СССР. Министром был назначен Сергей Александрович Афанасьев. В результате грамотной государственной политики в СССР в области ракетостроения было разработано несколько приоритетных направлений:



Баллистическая жидкостная ракета Р5М с ядерной боеголовкой

1. Первая в мире баллистическая жидкостная ракета Р5М с ядерной боеголовкой, дальность стрельбы 1200 км (гл. конструктор С.П. Королёв), пуск которой с реальным ядерным зарядом был осуществлен 2 февраля 1956 года.



МБР наземного базирования (МБР) Р-7

2. Первая в мире межконтинентальная жидкостная баллистическая ракета наземного базирования (МБР) Р-7, первый успешный пуск которой был проведен 21 августа 1957 года, принятая на вооружение в 1960 году с забрасываемым весом 2 т и дальностью стрельбы 12000 км (гл.конструктор С.П.Королев).


Ракета-носитель «Союз», созданная на базе МБР Р-7

3. Первая в мире ракета-носитель «Союз», созданная на базе МБР Р-7, которая 4 октября 1957 года вывела на орбиту первый в мире искусственный спутник Земли, а 12 апреля 1961 года первый в мире пилотируемый космический корабль, на котором Юрий Гагарин открыл человечеству дорогу в космос (гл. конструктор С.П. Королёв).



Баллистическая ракета подводных лодок - жидкостная ракета Р-29

4. Первая в мире межконтинентальная баллистическая ракета подводных лодок (БРПЛ) - жидкостная ракета Р-29, забрасываемый вес 1,1 т, дальность стрельбы 7800 км, принятая на вооружение в 1974 г. (гл. конструктор В.П. Макеев).


БРПЛ с 10 боевыми блоками - твердотопливная ракета Р-39

5. Первая в мире БРПЛ с 10 боевыми блоками - твердотопливная ракета Р-39, забрасываемый вес 2,55 т, дальность стрельбы 8300 км, оснащенная уникальной амортизационной ракетно-стартовой системой (АРСС), обеспечивающей старт из подледного положения, принятая на вооружение в 1983 г. (ген. конструктор В.П. Макеев).

Подвижный грунтовый ракетный комплекс (ПГРК)

МБР подвижного грунтового базирования - твердотопливная ракета РТ-2ПМ «Тополь» с моноблоком



Пусковая установка твердотопливной ракеты РТ-2ПМ «Тополь»

6. Первая в мире МБР подвижного грунтового базирования - твердотопливная ракета РТ-2ПМ «Тополь» с моноблоком, забрасываемый вес 1 т, дальность стрельбы 10000 км, принятая на вооружение в 1988 г. (гл. конструктор А.Д. Надирадзе).

Боевой железнодорожный ракетный комплекс (БЖРК)

МБР подвижного железнодорожного базирования -твердотопливная ракета РТ-23УТТХ (10 боевых блоков)



Пусковой вагон БЖРК с поднятым контейнером

7. Первая в мире МБР подвижного железнодорожного базирования -твердотопливная ракета РТ-23УТТХ (10 боевых блоков), забрасываемый вес 4,05 т, максимальная дальность стрельбы 10000 км, принятая на вооружение в 1989 году (ген. конструктор В.Ф. Уткин).



Ракета-носитель, способная вывести на орбиту космический аппарат или космическую станцию весом до 100 т - ракета-носитель Энергия»



Последний пуск ракеты-носителя «Энергия», когда на орбиту был выведен орбитальный корабль «Буран» (без пилотов)

8. Первая в мире ракета-носитель, способная вывести на орбиту космический аппарат или космическую станцию весом до 100 т - ракета-носитель Энергия» (ген. конструктор В.П.Глушко).

Первый пуск этой ракеты с 75 тонным прототипом орбитальной лазерной платформы был осуществлен 15 мая 1987 года.

Второй, к сожалению, последний пуск ракеты-носителя «Энергия» был проведен 15 ноября 1988 г, когда на орбиту был выведен орбитальный корабль «Буран» (без пилотов), который два раза обогнул Землю, потом спустился с орбиты, развернулся над космодромом Байконур и в автоматическом режиме приземлился с высокой точностью.


Сверхзвуковые крылатые ракеты морского базирования:

9. Первые в мире сверхзвуковые крылатые ракеты морского базирования: «Базальт», «Гранит» и др. (ген.конструктор В.Н.Челомей).

Трагические потери

Анализируя факты и события, связанные с развитием ракетостроения в новейшей истории России, можно утверждать, что судьба отечественного ракетостроения, сложилась трагически.

1. Производство ракеты-носителя «Энергия» было прекращено, а имевшийся задел уничтожен.


2. Производство «Бурана» также прекращено, из уже построенных - два были уничтожены на Байконуре, остальные выставлялись на всеобщее обозрение в Центральном парке культуры в Москве и за рубежом.


3. Не создано ни одной новой ракеты-носителя. Выводы аппаратов на космические орбиты до сих пор осуществляются:

  • ракетами - носителями типа «Союз», являющимися модификациями королевской ракеты Р-7 (полезная нагрузка до 8,8 т)
  • ракетой - носителем «Протон», начало эксплуатации 1965 год (гл.констрктор В.Н.Челомей), и ее модификации (полезная нагрузка до 22 т
  • ракетами - носителями «Рокот», «Стрела» и «Днепр»


Последние три ракеты, это снятые с боевого дежурства в связи с завершением сроков эксплуатации и переоборудованные МБР УР-100НУТТХ (ген. конструктор В.Н.Челомей) и Р-36М УТТХ (ген. конструктор В.Ф.Уткин). Когда все эти МБР закончатся, указанные ракеты-носители исчезнут.


4. Все 36 МБР РТ-23УТТХ и 12 железнодорожных составов, в которых они размещались, уничтожены.


5. Все 120 БРПЛ Р-39 уничтожены, а все 6 ПЛ проекта 94,1 в которых они размещались, выведены из боевого состава ВМФ, 3 из них уже утилизированы.


6. Новейшие жидкостные БРПЛ «Синева», забрасываемый вес 2,8 т (4 средних или 10 малых боевых блоков), максимальная дальность стрельбы с уменьшенным числом блоков - 11547 км, принятая на вооружение в 2007 г, и ее модернизированный вариант ракета «Лайнер» (ген. конструктор В.Г.Дегтярь), устанавливаются только в устаревшие ПЛ проекта 667БРМ, прошедшие заводской ремонт, срок боевой эксплуатации которых приходит к концу, а новых ПЛ под эти ракеты не строится. Следовательно, в ближайшие годы эти новейшие ракеты останутся только в воспоминаниях разработчиков и моряков.


7. Новые ПЛ (проекта 955) строятся только под ракету «Булава», забрасываемый вес 1,15 т, которая находится на завершающей стадии испытаний (ген.конструктор Ю.С.Соломонов). Головной корабль проекта 955 «Юрий Долгорукий» (12 шахт), заложенный в 1996 году, в январе 1913 года зачислен в состав 31-ой дивизии подводных лодок Северного флота, базирующейся в Гаджиево Мурманской области и заступит на боевое дежурство в Мировом океане после января 2014 года.

Нетрудно посчитать, что суммарный забрасываемый вес всего боекомплекта этой ПЛ составит 13,8 т. Если на последующих ПЛ проекта 955 число шахт будет увеличено до 20, то эта величина возрастет до 23 т. Напомним, что суммарный забрасываемый вес всего боекомплекта одной американской ПЛ «Огайо» (24 шахты) с ракетами «Трайдент-2», принятыми на вооружение в 1990 году, с забрасываемым весом 2,8 т (как у нашей «Синевы») и максимальной дальностью стрельбы с уменьшенным числом блоков 11300 км (почти как у нашей «Синевы»), составляет 67,2 т. Американская ракета «Трайдент-1» с забрасываемым весом 1,28 т давно снята с вооружения.

ИСПОЛЬЗУЕМАЯ ЛИТЕРАТУРА:

1.Баллистическая ракета «Булава». Технические характеристики. Справка.

2.Виктор Чирков - главком ВМФ. "Юрий Долгорукий" заступит на боевое дежурство через год.

3.Григорьев Ю.П. - Ракетно-космическая промышленность. «Военно-промышленный комплекс». Энциклопедия. Том 1 . Москва, Военный Парад. 2005.

4.Григорьев Ю.П. От гонки вооружений ХХ века к потере ядерного паритета в XXI. Независимое военное обозрение №11, 2006

5.Григорьев Ю.П. Проблемы отечественной космонавтики. ОРУЖИЕ РОССИИ. Информационное агентство. Москва, 21 июля 2012

Что такое космическая ракета? Чем она отличается от обычной? Космическая ракета – это ракета составная, многоступенчатая, работающая на жидком топливе. Никто в готовом виде такую ракету сразу не придумал!

Первые простые ракеты появились ещё в 13 веке в Китае.

Эскизы и чертёжи первых многоступенчатых ракет появились в трудах военного техника Конрада Хааса (1556 г.) и учёного Казимира Семеновича (1650 г.). Именно он, по мнению многих специалистов, является первым изобретателем многоступенчатой ракеты. Но это были военно-инженерные проекты. Ни Хаас, ни Семенович не предполагали их использование в космических целях.

Первым идею использования многоступенчатой ракеты для полёта в космос предложил
в 17 веке… Сирано де Бержерак в своей фантастической повести «Путешествие на Луну» (1648 г.).

Но дело в том, что обычная многоступенчатая ракета на твёрдом топливе (в основном предлагался порох) не годилась для космических полётов. Нужен был принципиально иной вид топлива.

И вот, наконец, в начале 20 века, в 1903 году, наш соотечественник К. Э. Циолковский придумал, как научить ракету летать в космосе. Он придумал ЖИДКОЕ двухкомпонентное топливо! – Впервые предложил конструкцию космической ракеты с жидкостным реактивным двигателем! – В этом его великая заслуга. И именно поэтому Циолковский считается одним из основоположников космонавтики (хотя ему и не удалось предложить работоспособную конструкцию ракеты). «Одним из» – потому что всего их трое. Кроме нашего Циолковского это ещё американец Роберт Годдард и немец Герман Оберт.


Годдард в 1914 г. первым, наконец, предложил прототип настоящей космической ракеты – многоступенчатую ракету на жидком топливе. То есть Годдард свёл воедино две основополагающих идеи – идею многоступенчатости и идею жидкого топлива. Многоступенчатость + Жидкое топливо = Космическая ракета. То есть проект настоящей космической ракеты впервые появился именно в трудах Годдарда. Причём в конструкции ракеты Годдарда предусмотрено последовательное отделение ступеней. Именно Годдард в 1914 г. впервые получил патент на изобретение многоступенчатых ракет.
Более того, Годдард занимался не только теоретическими выкладками. Он был ещё и практик! В 1926 году именно сам Годдард и построил первую в мире ракету с жидкостным реактивным двигателем (на жидком топливе). Построил и запустил! (Пусть тогда ещё и не на очень большую высоту, но это же был только первый пробный запуск!)
Так что если к кому в большей степени и относится фраза «придумал космическую ракету» – так это именно к Годдарду.


Стать свидетелем запусков многоступенчатых космических ракет суждено было только одному из трёх «отцов» – Герману Оберту. В 1923 году выходит его книжка, в которой он предложил двухступенчатую ракету для полёта в космос. Выход этой работы имел огромный резонанс в обществе! Даже советская газета «Правда» неоднократно писала об идее «немецкого профессора Оберта, который придумал способ полёта в космос». Оберт тоже был практиком. Он тоже построил свою ракету.

Кроме традиционно называемых трёх «отцов», пожалуй, можно назвать ещё и четвёртого основоположника космонавтики – Юрия Кондратюка, который в своём труде «Тем, кто будет читать, чтобы строить» дал принципиальную схему и описание 4-ступенчатой ракеты, работающей на кислородно-водородном топливе. Работа над рукописью была начата в 1916 г. и закончена в 1919 г. Кондратюк знаменит, прежде всего, тем, что именно он рассчитал оптимальную траекторию полёта к Луне. Эти расчёты были использованы NASA в лунной программе «Аполлон». Предложенная им в 1916 году траектория была впоследствии названа «трассой Кондратюка».